FreesearchR/inst/translations/translation_da.csv
Andreas Gammelgaard Damsbo 136480ca3d
Some checks are pending
pkgdown.yaml / pkgdown (push) Waiting to run
updated translation strings
2025-09-11 15:21:04 +02:00

10 KiB

1enda
2HelloHej
3Get startedKom i gang
4File uploadUpload fil
5REDCap server exportREDCap server export
6Local or sample dataLokal eller testdata
7Please be mindfull handling sensitive dataPas godt på og overvej nøje hvordan du håndterer personfølsomme data
8The ***FreesearchR*** app only stores data for analyses, but please only use with sensitive data when running locally. [Read more here](https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine).***FreesearchR*** opbevarer alene data i forbindelse med din analyse, men du bør kun behandle personfølsomme data når du kører ***FreesearchR*** direkte på din egen maskine. [Læs mere her](https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine).
9Quick overviewHurtigt overblik
10Select variables for final importVælg variabler til den endelige import
11Exclude incomplete variables:Ekskluder inkomplette variabler:
12Manual selection:Manuel udvælgelse:
13Let's begin!Kom i gang!
14Analysis validationAnalysevalidering
15ReportRapport
16Choose your favourite output file format for further work, and download, when the analyses are done.Vælge dit foretrukne dataformat, og hent data, når du er ærdig med databehandlingen.
17www/intro.htmlwww/intro_da.html
18<p>The <em><strong>FreesearchR</strong></em> app only stores data for analyses, but please only use with sensitive data when running locally. <a href='https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine'>Read more here</a></p><p><em><strong>FreesearchR</strong></em> opbevarer alene data i forbindelse med din analyse, men du bør kun behandle personfølsomme data når du kører <em><strong>FreesearchR</strong></em> direkte på dine egen maskine. <a href='https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine'>Læs mere her</a></p>
19Overview and filterOverblik og filtre
20Overview and filteringOverblik og filtrering
21Below you find a summary table for quick insigths, and on the right you can visualise data classes, browse data and apply different data filters.Below you find a summary table for quick insigths, and on the right you can visualise data classes, browse data and apply different data filters.
22Visual overviewVisuelt overblik
23Browse dataUdforsk data
24Filter data typesFiltrer datatyper
25Filter observationsFiltrer observationer
26Apply filter on observationAnvend filtre af observationer
27Edit and create dataÆndr og opret variabler
28Subset, rename and convert variablesUdvælg, omdøb og konverter variabler
29Below, are several options for simple data manipulation like update variables by renaming, creating new labels (for nicer tables in the report) and changing variable classes (numeric, factor/categorical etc.).Below, are several options for simple data manipulation like update variables by renaming, creating new labels (for nicer tables in the report) and changing variable classes (numeric, factor/categorical etc.).
30There are more advanced options to modify factor/categorical variables as well as create new factor from a continous variable or new variables with R code. At the bottom you can restore the original data.There are more advanced options to modify factor/categorical variables as well as create new factor from a continous variable or new variables with R code. At the bottom you can restore the original data.
31Please note that data modifications are applied before any filtering.Please note that data modifications are applied before any filtering.
32Advanced data manipulationAvanceret datamanipulation
33Below options allow more advanced varaible manipulations.Below options allow more advanced varaible manipulations.
34Reorder factor levelsArranger niveuer i faktor
35Reorder the levels of factor/categorical variables.Reorder the levels of factor/categorical variables.
36New factorNy faktor
37Create factor/categorical variable from a continous variable (number/date/time).Create factor/categorical variable from a continous variable (number/date/time).
38New variableNy variabel
39Create a new variable based on an R-expression.Create a new variable based on an R-expression.
40Compare modified data to originalCompare modified data to original
41Raw print of the original vs the modified data.Raw print of the original vs the modified data.
42Original data:Original data:
43Modified data:Ændret data:
44New column name:Navn til ny variabel:
45Group calculation by:Group calculation by:
46Enter an expression to define new column:Enter an expression to define new column:
47Click on a column name to add it to the expression:Click on a column name to add it to the expression:
48Create columnCreate column
49Choose a name for the column to be created or modified,Choose a name for the column to be created or modified,
50then enter an expression before clicking on the button above to validate or onthen enter an expression before clicking on the button above to validate or on
51to delete it.to delete it.
52New column name cannot be emptyNew column name cannot be empty
53Create a new columnCreate a new column
54Some operations are not allowedSome operations are not allowed
55Column added!Column added!
56Unique values:Unique values:
57Variable to cut:Variable to cut:
58Number of breaks:Number of breaks:
59Close intervals on the rightClose intervals on the right
60Include lowest valueInclude lowest value
61Create factor variableCreate factor variable
62Fixed breaks:Fixed breaks:
63Method:Method:
64Convert Numeric to FactorConvert Numeric to Factor
65Unique:Unique:
66Missing:Missing:
67Most Common:Most Common:
68Min:Min:
69Mean:Mean:
70Max:Max:
71Decimal separator:Decimal separator:
72First five rows are shown below:First five rows are shown below:
73Imported dataImported data
74www/intro.mdwww/intro.md
75Choose your dataChoose your data
76Upload a file, get data directly from REDCap or use local or sample data.Upload a file, get data directly from REDCap or use local or sample data.
77Factor variable to reorder:Factor variable to reorder:
78Sort by levelsSort by levels
79Sort by countSort by count
80Create a new variable (otherwise replaces the one selected)Create a new variable (otherwise replaces the one selected)
81Update factor variableUpdater faktor-variabel
82Sort countSorter antal
83LevelsNiveauer
84CountAntal
85Update levels of a factorUpdater niveauerne for en faktor
86Update & select variablesUpdate & select variables
87Date format:Datoformat:
88Date to use as origin to convert date/datetime:Date to use as origin to convert date/datetime:
89Apply changesApply changes
90No data to display.Ingen data at vise.
91Data successfully updated!Data er opdateret!
92You removed {p_out} % of observations.Du har fjernet {p_out} % af observationerne.
93You removed {p_out} % of variables.Du har fjernet {p_out} % af variablerne.
94You can import {file_extensions_text} filesDu kan vælge mellem disse filtyper: {file_extensions_text}.
95You can choose between these file types:Du kan vælge mellem følgene filtyper:
96Rows to skip before reading data:Rækker der skal springes over:
97Missing values character(s):Tegn for manglende værdier:
98if several use a comma (',') to separate themif several use a comma (',') to separate them
99Encoding:Kodning:
100Upload a file:Upload en fil:
101Browse...Vælg...
102Select sheet to import:Vælg ark:
103No file selected.Ingen fil valgt.
104EvaluateEvaluer
105VisualsGrafik
106RegressionRegression
107DownloadDownload
108{data_text} has {n} observations and {n_var} variables, with {n_complete} ({p_complete} %) complete cases.{data_text} har {n} observationer og {n_var} variabler, med {n_complete} ({p_complete} %) komplette cases.
109PrepareForbered
110At 0, only complete variables are included; at 100, all variables are included.At 0, only complete variables are included; at 100, all variables are included.
111The following variable pairs are highly correlated: {sentence_paste(.x,and_str)}.\nConsider excluding one {more}from the dataset to ensure variables are independent.The following variable pairs are highly correlated: {sentence_paste(.x,and_str)}.\nConsider excluding one {more}from the dataset to ensure variables are independent.
112No variables have a correlation measure above the threshold.Ingen variabler er korrelerede over den angivne tærskelværdi.
113andog
114from each pairfra hvert par
115Only non-text variables are available for plotting. Go the "Data" to reclass data to plot.Only non-text variables are available for plotting. Go the "Data" to reclass data to plot.
116PlotPlot
117Adjust settings, then press "Plot".Adjust settings, then press "Plot".
118Plot height (mm)Plot height (mm)
119Plot width (mm)Plot width (mm)
120File formatFile format
121Download plotDownload plot
122Select variableSelect variable
123Response variableResponse variable
124Plot typePlot type
125Please selectPlease select
126Additional variablesAdditional variables
127Secondary variableSecondary variable
128No variableNo variable
129Grouping variableGrouping variable
130No stratificationNo stratification
131Drawing the plot. Hold tight for a moment..Drawing the plot. Hold tight for a moment..
132#Plotting\n#Plotting\n
133Drawing the plot. Hold on for a moment..Drawing the plot. Hold on for a moment..
134Stacked horizontal barsStacked horizontal bars
135A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta barsA classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars
136Violin plotViolin plot
137A modern alternative to the classic boxplot to visualise data distributionA modern alternative to the classic boxplot to visualise data distribution
138Sankey plotSankey plot
139A way of visualising change between groupsA way of visualising change between groups
140Scatter plotScatter plot
141A classic way of showing the association between to variablesA classic way of showing the association between to variables
142Box plotBox plot
143A classic way to plot data distribution by groupsA classic way to plot data distribution by groups
144Euler diagramEuler diagram
145Generate area-proportional Euler diagrams to display set relationshipsGenerate area-proportional Euler diagrams to display set relationships