utils::globalVariables(c("group", "grp", "i", "j", "value")) #' Solve grouping based on priorities or costs. #' #' @param data data set in wide format. First column should bi ID, then one column #' for each group containing cost/priorities. #' @param cap_classes class capacity. Numeric vector length 1 or length=number #' of groups. If NULL equal group sizes are calculated. Default is NULL. #' @param excess_space allowed excess group fill in percentage. Default is 20. #' Supplied group capacities will be enlarged by this factors and rounded up. #' @param pre_grouped Pre grouped data set. Optional. Should contain two #' columns, 'id' and 'group', with 'group' containing the given group index. #' @param seed specify a seed value. For complex problems. #' #' @return list of custom class 'prioritized_groups_list' #' @export #' #' @examples #' prioritized_grouping( #' data=read.csv(here::here("data/prioritized_sample.csv")), #' pre_grouped=read.csv(here::here("data/pre_grouped.csv"))) |> plot() prioritized_grouping <- function(data, cap_classes = NULL, excess_space = 20, pre_grouped = NULL, seed = 6293812) { set.seed(seed = seed) # browser() requireNamespace("ROI") requireNamespace("ROI.plugin.symphony") if (!is.data.frame(data)) { stop("Supplied data has to be a data frame, with each row are subjects and columns are groups, with the first column being subject identifiers") } ## This program very much trust the user to supply correctly formatted data cost <- t(data[, -1]) # Transpose converts to matrix colnames(cost) <- data[, 1] nms_groups <- rownames(cost) num_groups <- dim(cost)[1] num_sub <- dim(cost)[2] ## Adding the option to introduce a bit of head room to the classes by ## the groups to a little bigger than the smallest possible ## Default is to allow for an extra 20 % fill excess <- 1 + (excess_space / 100) # generous round up of capacities if (is.null(cap_classes)) { capacity <- rep(ceiling(excess * num_sub / num_groups), num_groups) # } else if (!is.numeric(cap_classes)) { # stop("cap_classes has to be numeric") } else if (length(cap_classes) == 1) { capacity <- ceiling(rep(cap_classes, num_groups) * excess) } else if (length(cap_classes) == num_groups) { capacity <- ceiling(cap_classes * excess) } else { stop("cap_classes has to be either length 1 or same as number of groups") } ## This test should be a little more elegant ## pre_grouped should be a data.frame or matrix with an ID and group column with_pre_grouped <- FALSE if (!is.null(pre_grouped)) { # Setting flag for later and export list with_pre_grouped <- TRUE # Simple translation to allow pre_grouped to denote indices if (is.numeric(pre_grouped[, 2])){ pre_grouped$pre.groups <- nms_groups[pre_grouped[, 2]] } else { pre_grouped$pre.groups <- as.character(pre_grouped[, 2]) } # Splitting to list for later merging pre <- split( pre_grouped[, 1], factor(pre_grouped[, 3], levels = nms_groups) ) # Subtracting capacity numbers, to reflect already filled spots capacity <- capacity - lengths(pre) # Making sure pre_grouped are removed from main data set data <- data[!data[[1]] %in% pre_grouped[[1]], ] cost <- t(data[, -1]) colnames(cost) <- data[, 1] num_groups <- dim(cost)[1] num_sub <- dim(cost)[2] } ## Simple NA handling. Better to handle NAs yourself! cost[is.na(cost)] <- num_groups i_m <- seq_len(num_groups) j_m <- seq_len(num_sub) m <- ompr::MIPModel() |> ompr::add_variable(grp[i, j], i = i_m, j = j_m, type = "binary" ) |> ## The first constraint says that group size should not exceed capacity ompr::add_constraint(ompr::sum_expr(grp[i, j], j = j_m) <= capacity[i], i = i_m ) |> ## The second constraint says each subject can only be in one group ompr::add_constraint(ompr::sum_expr(grp[i, j], i = i_m) == 1, j = j_m) |> ## The objective is set to minimize the cost of the grouping ## Giving subjects the group with the highest possible ranking ompr::set_objective( ompr::sum_expr( cost[i, j] * grp[i, j], i = i_m, j = j_m ), "min" ) |> ompr::solve_model(ompr.roi::with_ROI(solver = "symphony", verbosity = 1)) if (m$status == "error") { stop("The algorithm is not able to solve the problem. Please adjust the constraints by increasing group capacities and/or excess fill") } ## Getting groups solution <- ompr::get_solution(m, grp[i, j]) |> dplyr::filter(value > 0) grouped <- solution |> dplyr::select(i, j) if (!is.null(rownames(cost))) { grouped$i <- rownames(cost)[grouped$i] } if (!is.null(colnames(cost))) { grouped$j <- colnames(cost)[grouped$j] } ## Splitting into groups based on groups grouped_ls <- split(grouped$j, grouped$i) ## Extracting subject cost for the final groups for evaluation if (is.null(rownames(cost))) { rownames(cost) <- seq_len(nrow(cost)) } if (is.null(colnames(cost))) { colnames(cost) <- seq_len(ncol(cost)) } evaluated <- lapply(seq_len(length(grouped_ls)), function(i) { ndx <- match(names(grouped_ls)[i], rownames(cost)) cost[ndx, grouped_ls[[i]]] }) names(evaluated) <- names(grouped_ls) if (with_pre_grouped) { names(pre) <- names(grouped_ls) grouped_all <- mapply(c, grouped_ls, pre, SIMPLIFY = FALSE) out <- list(all_grouped = grouped_all) } else { out <- list(all_grouped = grouped_ls) } export <- do.call(rbind, lapply(seq_along(out[[1]]), function(i) { cbind("ID" = out[[1]][[i]], "Group" = names(out[[1]])[i]) })) out <- c( out, list( evaluation = evaluated, groupings = grouped_ls, solution = solution, capacity = capacity, excess = excess, pre_grouped = with_pre_grouped, cost_scale = levels(factor(cost)), input = data, export = export ) ) # exists("excess") class(out) <- c("prioritized_groups_list", class(out)) return(out) } #' Assessment performance overview #' @description #' The function plots costs of grouping for each subject in every group. #' Performance measures printed are fill: fraction of filling relative to the #' capacity specified; mean: mean priority/cost in group; n: number of subjects #' in the group. #' #' @param data A "prioritized_groups_list" class list from #' 'prioritized_grouping()' #' @param columns number of columns in plot #' @param overall logical to only print overall groups mean priority/cost #' @param viridis.option option value passed on to 'viridisLite::viridis'. #' Default="D". #' @param viridis.direction direction value passed on to 'viridisLite::viridis'. #' Default=-1. #' #' @return ggplot2 list object #' @export #' #' @examples #' #read.csv(here::here("data/prioritized_sample.csv")) |> #' # prioritized_grouping(cap_classes = sample(4:12, 17, TRUE)) |> #' # grouping_plot() grouping_plot <- function(data, columns = NULL, overall = FALSE, viridis.option="D", viridis.direction=-1) { assertthat::assert_that("prioritized_groups_list" %in% class(data)) dl <- data[[2]] cost_scale <- unique(data[[8]]) cap <- data[[5]] cnts_ls <- lapply(dl, function(i) { factor(i, levels = cost_scale) }) y_max <- max(lengths(dl)) if (overall) { ds <- tibble::tibble( group = seq_along(dl), mean = round(Reduce(c, lapply(dl, mean)), 1) ) out <- ds |> ggplot2::ggplot(ggplot2::aes(x = group, y = mean, fill = mean)) + ggplot2::geom_bar(stat = "identity") + ggplot2::geom_hline(yintercept = 1) + ggplot2::scale_fill_viridis_c(option=viridis.option, direction = viridis.direction) + ggplot2::guides(fill = "none") + ggplot2::scale_x_continuous(name = "Groups", breaks = ds$group) + ggplot2::ylab("Mean priority/cost") + ggplot2::labs( title = "Overall group-wise mean priority/cost of groupings", subtitle = "Horizontal line marking the perfect mean=1 for reference" ) } else { out <- lapply(seq_along(dl), function(i) { ttl <- names(dl)[i] ns <- length(dl[[i]]) cnts <- cnts_ls[[i]] ggplot2::ggplot() + ggplot2::geom_bar(ggplot2::aes(cnts, fill = cnts)) + ggplot2::scale_x_discrete( name = NULL, breaks = cost_scale, drop = FALSE ) + ggplot2::scale_y_continuous(name = NULL, limits = c(0, y_max)) + ggplot2::scale_fill_manual( values = viridisLite::viridis(length(cost_scale), direction = viridis.direction, option = viridis.option) ) + ggplot2::guides(fill = "none") + ggplot2::labs( title = paste0( ttl, " (fill=", round(ns / cap[[i]], 1), ";n=", ns, ";mean=", round(mean(dl[[i]]), 1), ")" ) ) }) |> patchwork::wrap_plots(ncol = columns) } return(out) } #' Plot extension for easy groupings plot #' #' @param data data of class 'prioritized_groups_list' #' @param ... passed on to 'grouping_plot()' #' #' @return ggplot2 list object #' @export #' #' @examples #' read.csv(here::here("data/prioritized_sample.csv")) |> #' prioritized_grouping() |> #' plot(overall = TRUE, viridis.option="D",viridis.direction=-1) plot.prioritized_groups_list <- function(data, ...) { grouping_plot(data, ...) } ## Helper function for Shiny #' Title #' #' @param filenames character vector of file name. Splits at the last '.'. #' #' @return character vector of extension #' @export #' #' @examples #' file_extension("data/prioritized_sample.csv") file_extension <- function(filenames) { sub( pattern = "^(.*\\.|[^.]+)(?=[^.]*)", replacement = "", filenames, perl = TRUE ) }