mirror of
https://github.com/agdamsbo/prioritized.grouping.git
synced 2025-09-12 10:39:39 +02:00
320 lines
10 KiB
R
320 lines
10 KiB
R
|
utils::globalVariables(c("group", "grp", "i", "j", "value"))
|
||
|
|
||
|
#' Solve grouping based on priorities or costs.
|
||
|
#'
|
||
|
#' @param data data set in wide format. First column should bi ID, then one column
|
||
|
#' for each group containing cost/priorities.
|
||
|
#' @param cap_classes class capacity. Numeric vector length 1 or length=number
|
||
|
#' of groups. If NULL equal group sizes are calculated. Default is NULL.
|
||
|
#' @param excess_space allowed excess group fill in percentage. Default is 20.
|
||
|
#' Supplied group capacities will be enlarged by this factors and rounded up.
|
||
|
#' @param pre_grouped Pre grouped data set. Optional. Should contain two
|
||
|
#' columns, 'id' and 'group', with 'group' containing the given group index.
|
||
|
#' @param seed specify a seed value. For complex problems.
|
||
|
#'
|
||
|
#' @return list of custom class 'prioritized_groups_list'
|
||
|
#' @export
|
||
|
#'
|
||
|
#' @examples
|
||
|
#' prioritized_grouping(
|
||
|
#' data=read.csv(here::here("data/prioritized_sample.csv")),
|
||
|
#' pre_grouped=read.csv(here::here("data/pre_grouped.csv"))) |> plot()
|
||
|
prioritized_grouping <-
|
||
|
function(data,
|
||
|
cap_classes = NULL,
|
||
|
excess_space = 20,
|
||
|
pre_grouped = NULL,
|
||
|
seed = 6293812) {
|
||
|
set.seed(seed = seed)
|
||
|
# browser()
|
||
|
requireNamespace("ROI")
|
||
|
requireNamespace("ROI.plugin.symphony")
|
||
|
|
||
|
if (!is.data.frame(data)) {
|
||
|
stop("Supplied data has to be a data frame, with each row
|
||
|
are subjects and columns are groups, with the first column being
|
||
|
subject identifiers")
|
||
|
}
|
||
|
|
||
|
## This program very much trust the user to supply correctly formatted data
|
||
|
cost <- t(data[, -1]) # Transpose converts to matrix
|
||
|
colnames(cost) <- data[, 1]
|
||
|
|
||
|
nms_groups <- rownames(cost)
|
||
|
num_groups <- dim(cost)[1]
|
||
|
num_sub <- dim(cost)[2]
|
||
|
|
||
|
## Adding the option to introduce a bit of head room to the classes by
|
||
|
## the groups to a little bigger than the smallest possible
|
||
|
## Default is to allow for an extra 20 % fill
|
||
|
excess <- 1 + (excess_space / 100)
|
||
|
|
||
|
# generous round up of capacities
|
||
|
if (is.null(cap_classes)) {
|
||
|
capacity <- rep(ceiling(excess * num_sub / num_groups), num_groups)
|
||
|
# } else if (!is.numeric(cap_classes)) {
|
||
|
# stop("cap_classes has to be numeric")
|
||
|
} else if (length(cap_classes) == 1) {
|
||
|
capacity <- ceiling(rep(cap_classes, num_groups) * excess)
|
||
|
} else if (length(cap_classes) == num_groups) {
|
||
|
capacity <- ceiling(cap_classes * excess)
|
||
|
} else {
|
||
|
stop("cap_classes has to be either length 1 or same as number of groups")
|
||
|
}
|
||
|
|
||
|
## This test should be a little more elegant
|
||
|
## pre_grouped should be a data.frame or matrix with an ID and group column
|
||
|
with_pre_grouped <- FALSE
|
||
|
if (!is.null(pre_grouped)) {
|
||
|
# Setting flag for later and export list
|
||
|
with_pre_grouped <- TRUE
|
||
|
|
||
|
# Simple translation to allow pre_grouped to denote indices
|
||
|
if (is.numeric(pre_grouped[, 2])){
|
||
|
pre_grouped$pre.groups <- nms_groups[pre_grouped[, 2]]
|
||
|
} else {
|
||
|
pre_grouped$pre.groups <- as.character(pre_grouped[, 2])
|
||
|
}
|
||
|
|
||
|
# Splitting to list for later merging
|
||
|
pre <- split(
|
||
|
pre_grouped[, 1],
|
||
|
factor(pre_grouped[, 3], levels = nms_groups)
|
||
|
)
|
||
|
# Subtracting capacity numbers, to reflect already filled spots
|
||
|
capacity <- capacity - lengths(pre)
|
||
|
# Making sure pre_grouped are removed from main data set
|
||
|
data <- data[!data[[1]] %in% pre_grouped[[1]], ]
|
||
|
|
||
|
cost <- t(data[, -1])
|
||
|
colnames(cost) <- data[, 1]
|
||
|
|
||
|
num_groups <- dim(cost)[1]
|
||
|
num_sub <- dim(cost)[2]
|
||
|
}
|
||
|
|
||
|
## Simple NA handling. Better to handle NAs yourself!
|
||
|
cost[is.na(cost)] <- num_groups
|
||
|
|
||
|
i_m <- seq_len(num_groups)
|
||
|
j_m <- seq_len(num_sub)
|
||
|
|
||
|
m <- ompr::MIPModel() |>
|
||
|
ompr::add_variable(grp[i, j],
|
||
|
i = i_m,
|
||
|
j = j_m,
|
||
|
type = "binary"
|
||
|
) |>
|
||
|
## The first constraint says that group size should not exceed capacity
|
||
|
ompr::add_constraint(ompr::sum_expr(grp[i, j], j = j_m) <= capacity[i],
|
||
|
i = i_m
|
||
|
) |>
|
||
|
## The second constraint says each subject can only be in one group
|
||
|
ompr::add_constraint(ompr::sum_expr(grp[i, j], i = i_m) == 1, j = j_m) |>
|
||
|
## The objective is set to minimize the cost of the grouping
|
||
|
## Giving subjects the group with the highest possible ranking
|
||
|
ompr::set_objective(
|
||
|
ompr::sum_expr(
|
||
|
cost[i, j] * grp[i, j],
|
||
|
i = i_m,
|
||
|
j = j_m
|
||
|
),
|
||
|
"min"
|
||
|
) |>
|
||
|
ompr::solve_model(ompr.roi::with_ROI(solver = "symphony", verbosity = 1))
|
||
|
|
||
|
if (m$status == "error") {
|
||
|
stop("The algorithm is not able to solve the problem. Please adjust the
|
||
|
constraints by increasing group capacities and/or excess fill")
|
||
|
}
|
||
|
|
||
|
## Getting groups
|
||
|
solution <- ompr::get_solution(m, grp[i, j]) |> dplyr::filter(value > 0)
|
||
|
|
||
|
grouped <- solution |> dplyr::select(i, j)
|
||
|
|
||
|
if (!is.null(rownames(cost))) {
|
||
|
grouped$i <- rownames(cost)[grouped$i]
|
||
|
}
|
||
|
|
||
|
if (!is.null(colnames(cost))) {
|
||
|
grouped$j <- colnames(cost)[grouped$j]
|
||
|
}
|
||
|
|
||
|
## Splitting into groups based on groups
|
||
|
grouped_ls <- split(grouped$j, grouped$i)
|
||
|
|
||
|
|
||
|
## Extracting subject cost for the final groups for evaluation
|
||
|
if (is.null(rownames(cost))) {
|
||
|
rownames(cost) <- seq_len(nrow(cost))
|
||
|
}
|
||
|
|
||
|
if (is.null(colnames(cost))) {
|
||
|
colnames(cost) <- seq_len(ncol(cost))
|
||
|
}
|
||
|
|
||
|
evaluated <- lapply(seq_len(length(grouped_ls)), function(i) {
|
||
|
ndx <- match(names(grouped_ls)[i], rownames(cost))
|
||
|
cost[ndx, grouped_ls[[i]]]
|
||
|
})
|
||
|
names(evaluated) <- names(grouped_ls)
|
||
|
|
||
|
if (with_pre_grouped) {
|
||
|
names(pre) <- names(grouped_ls)
|
||
|
grouped_all <- mapply(c, grouped_ls, pre, SIMPLIFY = FALSE)
|
||
|
|
||
|
out <- list(all_grouped = grouped_all)
|
||
|
} else {
|
||
|
out <- list(all_grouped = grouped_ls)
|
||
|
}
|
||
|
|
||
|
export <- do.call(rbind, lapply(seq_along(out[[1]]), function(i) {
|
||
|
cbind("ID" = out[[1]][[i]], "Group" = names(out[[1]])[i])
|
||
|
}))
|
||
|
|
||
|
out <- c(
|
||
|
out,
|
||
|
list(
|
||
|
evaluation = evaluated,
|
||
|
groupings = grouped_ls,
|
||
|
solution = solution,
|
||
|
capacity = capacity,
|
||
|
excess = excess,
|
||
|
pre_grouped = with_pre_grouped,
|
||
|
cost_scale = levels(factor(cost)),
|
||
|
input = data,
|
||
|
export = export
|
||
|
)
|
||
|
)
|
||
|
# exists("excess")
|
||
|
|
||
|
class(out) <- c("prioritized_groups_list", class(out))
|
||
|
|
||
|
return(out)
|
||
|
}
|
||
|
|
||
|
#' Assessment performance overview
|
||
|
#' @description
|
||
|
#' The function plots costs of grouping for each subject in every group.
|
||
|
#' Performance measures printed are fill: fraction of filling relative to the
|
||
|
#' capacity specified; mean: mean priority/cost in group; n: number of subjects
|
||
|
#' in the group.
|
||
|
#'
|
||
|
#' @param data A "prioritized_groups_list" class list from
|
||
|
#' 'prioritized_grouping()'
|
||
|
#' @param columns number of columns in plot
|
||
|
#' @param overall logical to only print overall groups mean priority/cost
|
||
|
#' @param viridis.option option value passed on to 'viridisLite::viridis'.
|
||
|
#' Default="D".
|
||
|
#' @param viridis.direction direction value passed on to 'viridisLite::viridis'.
|
||
|
#' Default=-1.
|
||
|
#'
|
||
|
#' @return ggplot2 list object
|
||
|
#' @export
|
||
|
#'
|
||
|
#' @examples
|
||
|
#' #read.csv(here::here("data/prioritized_sample.csv")) |>
|
||
|
#' # prioritized_grouping(cap_classes = sample(4:12, 17, TRUE)) |>
|
||
|
#' # grouping_plot()
|
||
|
grouping_plot <- function(data,
|
||
|
columns = NULL,
|
||
|
overall = FALSE,
|
||
|
viridis.option="D",
|
||
|
viridis.direction=-1) {
|
||
|
assertthat::assert_that("prioritized_groups_list" %in% class(data))
|
||
|
|
||
|
dl <- data[[2]]
|
||
|
cost_scale <- unique(data[[8]])
|
||
|
cap <- data[[5]]
|
||
|
cnts_ls <- lapply(dl, function(i) {
|
||
|
factor(i, levels = cost_scale)
|
||
|
})
|
||
|
|
||
|
y_max <- max(lengths(dl))
|
||
|
|
||
|
if (overall) {
|
||
|
ds <- tibble::tibble(
|
||
|
group = seq_along(dl),
|
||
|
mean = round(Reduce(c, lapply(dl, mean)), 1)
|
||
|
)
|
||
|
out <- ds |>
|
||
|
ggplot2::ggplot(ggplot2::aes(x = group, y = mean, fill = mean)) +
|
||
|
ggplot2::geom_bar(stat = "identity") +
|
||
|
ggplot2::geom_hline(yintercept = 1) +
|
||
|
ggplot2::scale_fill_viridis_c(option=viridis.option,
|
||
|
direction = viridis.direction) +
|
||
|
ggplot2::guides(fill = "none") +
|
||
|
ggplot2::scale_x_continuous(name = "Groups", breaks = ds$group) +
|
||
|
ggplot2::ylab("Mean priority/cost") +
|
||
|
ggplot2::labs(
|
||
|
title = "Overall group-wise mean priority/cost of groupings",
|
||
|
subtitle = "Horizontal line marking the perfect mean=1 for reference"
|
||
|
)
|
||
|
} else {
|
||
|
out <- lapply(seq_along(dl), function(i) {
|
||
|
ttl <- names(dl)[i]
|
||
|
ns <- length(dl[[i]])
|
||
|
cnts <- cnts_ls[[i]]
|
||
|
ggplot2::ggplot() +
|
||
|
ggplot2::geom_bar(ggplot2::aes(cnts, fill = cnts)) +
|
||
|
ggplot2::scale_x_discrete(
|
||
|
name = NULL,
|
||
|
breaks = cost_scale,
|
||
|
drop = FALSE
|
||
|
) +
|
||
|
ggplot2::scale_y_continuous(name = NULL, limits = c(0, y_max)) +
|
||
|
ggplot2::scale_fill_manual(
|
||
|
values = viridisLite::viridis(length(cost_scale),
|
||
|
direction = viridis.direction,
|
||
|
option = viridis.option)
|
||
|
) +
|
||
|
ggplot2::guides(fill = "none") +
|
||
|
ggplot2::labs(
|
||
|
title =
|
||
|
paste0(
|
||
|
ttl, " (fill=", round(ns / cap[[i]], 1), ";n=", ns, ";mean=",
|
||
|
round(mean(dl[[i]]), 1), ")"
|
||
|
)
|
||
|
)
|
||
|
}) |>
|
||
|
patchwork::wrap_plots(ncol = columns)
|
||
|
}
|
||
|
|
||
|
return(out)
|
||
|
}
|
||
|
|
||
|
#' Plot extension for easy groupings plot
|
||
|
#'
|
||
|
#' @param data data of class 'prioritized_groups_list'
|
||
|
#' @param ... passed on to 'grouping_plot()'
|
||
|
#'
|
||
|
#' @return ggplot2 list object
|
||
|
#' @export
|
||
|
#'
|
||
|
#' @examples
|
||
|
#' read.csv(here::here("data/prioritized_sample.csv")) |>
|
||
|
#' prioritized_grouping() |>
|
||
|
#' plot(overall = TRUE, viridis.option="D",viridis.direction=-1)
|
||
|
plot.prioritized_groups_list <- function(data, ...) {
|
||
|
grouping_plot(data, ...)
|
||
|
}
|
||
|
|
||
|
## Helper function for Shiny
|
||
|
#' Title
|
||
|
#'
|
||
|
#' @param filenames character vector of file name. Splits at the last '.'.
|
||
|
#'
|
||
|
#' @return character vector of extension
|
||
|
#' @export
|
||
|
#'
|
||
|
#' @examples
|
||
|
#' file_extension("data/prioritized_sample.csv")
|
||
|
file_extension <- function(filenames) {
|
||
|
sub(
|
||
|
pattern = "^(.*\\.|[^.]+)(?=[^.]*)",
|
||
|
replacement = "",
|
||
|
filenames, perl = TRUE
|
||
|
)
|
||
|
}
|