# Split REDCap repeating instruments table into multiple tables This will take output from a REDCap export and split it into a base table and child tables for each repeating instrument. Metadata is used to determine which fields should be included in each resultant table. ## Usage ``` r REDCap_split( records, metadata, primary_table_name = "", forms = c("repeating", "all") ) ``` ## Arguments - records: Exported project records. May be a `data.frame`, `response`, or `character` vector containing JSON from an API call. - metadata: Project metadata (the data dictionary). May be a `data.frame`, `response`, or `character` vector containing JSON from an API call. - primary_table_name: Name given to the list element for the primary output table. Ignored if `forms = 'all'`. - forms: Indicate whether to create separate tables for repeating instruments only or for all forms. ## Value A list of `"data.frame"`s. The number of tables will differ depending on the `forms` option selected. - `'repeating'`: one base table and one or more tables for each repeating instrument. - `'all'`: a data.frame for each instrument, regardless of whether it is a repeating instrument or not. ## Author Paul W. Egeler ## Examples ``` r if (FALSE) { # \dontrun{ # Using an API call ------------------------------------------------------- library(RCurl) # Get the records records <- postForm( uri = api_url, # Supply your site-specific URI token = api_token, # Supply your own API token content = "record", format = "json", returnFormat = "json" ) # Get the metadata metadata <- postForm( uri = api_url, # Supply your site-specific URI token = api_token, # Supply your own API token content = "metadata", format = "json" ) # Convert exported JSON strings into a list of data.frames REDCapCAST::REDCap_split(records, metadata) # Using a raw data export ------------------------------------------------- # Get the records records <- read.csv("/path/to/data/ExampleProject_DATA_2018-06-03_1700.csv") # Get the metadata metadata <- read.csv( "/path/to/data/ExampleProject_DataDictionary_2018-06-03.csv" ) # Split the tables REDCapCAST::REDCap_split(records, metadata) # In conjunction with the R export script --------------------------------- # You must set the working directory first since the REDCap data export # script contains relative file references. old <- getwd() setwd("/path/to/data/") # Run the data export script supplied by REDCap. # This will create a data.frame of your records called 'data' source("ExampleProject_R_2018-06-03_1700.r") # Get the metadatan metadata <- read.csv("ExampleProject_DataDictionary_2018-06-03.csv") # Split the tables REDCapCAST::REDCap_split(data, metadata) setwd(old) } # } ```