Compare commits

...

15 commits

Author SHA1 Message Date
965aa310ca
new comment on build
Some checks failed
R-CMD-check / macos-latest (release) (push) Has been cancelled
R-CMD-check / ubuntu-latest (oldrel-1) (push) Has been cancelled
R-CMD-check / ubuntu-latest (release) (push) Has been cancelled
R-CMD-check / windows-latest (release) (push) Has been cancelled
pkgdown / pkgdown (push) Has been cancelled
test-coverage.yaml / test-coverage (push) Has been cancelled
2025-03-10 11:37:59 +01:00
b512e6a570
new release 2025-03-10 10:35:13 +01:00
ff466c044c
fixing a bug when not exporting from the first instrument and pivoting to wide format 2025-03-07 16:01:12 +01:00
821e4583dd
ready for cran 2025-03-05 14:39:29 +01:00
58e63eb1cf
reversed metadata focus move 2025-03-05 14:38:15 +01:00
10064d7ee0
ready for cran 2025-03-05 13:41:08 +01:00
0b5319f647
allows not splitting data 2025-03-05 13:40:56 +01:00
2e1e7822a4
Interprets logicals 2025-03-05 13:40:40 +01:00
c9ee46f6a4
more data formats to export (semi-)long data 2025-03-05 13:40:23 +01:00
3ae16b767f
bug 2025-03-04 14:00:00 +01:00
3c4b132fb4
interpret single level vectors correctly 2025-03-04 13:54:58 +01:00
bb24a7d7bd
new as_logical function to ease binary data interpretation - version bump. Hi March! 2025-03-04 13:00:49 +01:00
f91aed0948
version 2025-02-25 10:50:19 +01:00
319ccfd9dd
updated covr action 2025-02-25 10:45:51 +01:00
7dfbb9b549
now interprets empty variables with empty levels attribute as logicals to avoid returning factors with empty levels 2025-02-25 10:36:37 +01:00
22 changed files with 446 additions and 93 deletions

View file

@ -4,9 +4,10 @@ on:
push:
branches: [main, master]
pull_request:
branches: [main, master]
name: test-coverage
name: test-coverage.yaml
permissions: read-all
jobs:
test-coverage:
@ -15,38 +16,47 @@ jobs:
GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- uses: r-lib/actions/setup-r@v2
with:
use-public-rspm: true
# - uses: r-lib/actions/setup-renv@v2
- uses: r-lib/actions/setup-r-dependencies@v2
with:
extra-packages: any::covr
extra-packages: any::covr, any::xml2
needs: coverage
- name: Test coverage
run: |
covr::codecov(
cov <- covr::package_coverage(
quiet = FALSE,
clean = FALSE,
install_path = file.path(Sys.getenv("RUNNER_TEMP"), "package")
install_path = file.path(normalizePath(Sys.getenv("RUNNER_TEMP"), winslash = "/"), "package")
)
print(cov)
covr::to_cobertura(cov)
shell: Rscript {0}
- uses: codecov/codecov-action@v4
with:
# Fail if error if not on PR, or if on PR and token is given
fail_ci_if_error: ${{ github.event_name != 'pull_request' || secrets.CODECOV_TOKEN }}
file: ./cobertura.xml
plugin: noop
disable_search: true
token: ${{ secrets.CODECOV_TOKEN }}
- name: Show testthat output
if: always()
run: |
## --------------------------------------------------------------------
find ${{ runner.temp }}/package -name 'testthat.Rout*' -exec cat '{}' \; || true
find '${{ runner.temp }}/package' -name 'testthat.Rout*' -exec cat '{}' \; || true
shell: bash
- name: Upload test results
if: failure()
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: coverage-test-failures
path: ${{ runner.temp }}/package

View file

@ -1,6 +1,6 @@
Package: REDCapCAST
Title: REDCap Metadata Casting and Castellated Data Handling
Version: 25.1.1
Version: 25.3.2
Authors@R: c(
person("Andreas Gammelgaard", "Damsbo", email = "agdamsbo@clin.au.dk",
role = c("aut", "cre"),comment = c(ORCID = "0000-0002-7559-1154")),
@ -72,6 +72,7 @@ Collate:
'process_user_input.r'
'REDCap_split.r'
'as_factor.R'
'as_logical.R'
'doc2dd.R'
'ds2dd_detailed.R'
'easy_redcap.R'

View file

@ -7,6 +7,8 @@ S3method(as_factor,haven_labelled)
S3method(as_factor,labelled)
S3method(as_factor,logical)
S3method(as_factor,numeric)
S3method(as_logical,data.frame)
S3method(as_logical,default)
S3method(fct_drop,data.frame)
S3method(fct_drop,factor)
S3method(process_user_input,character)
@ -18,6 +20,7 @@ export(all_na)
export(apply_factor_labels)
export(apply_field_label)
export(as_factor)
export(as_logical)
export(case_match_regex_list)
export(cast_data_overview)
export(cast_meta_overview)

14
NEWS.md
View file

@ -1,3 +1,17 @@
# REDCapCAST 25.3.2
* BUG: The `redcap_wider()` function would attempt to pivot empty selection of columns from list, and failing, causing all functions relying on this to fail. Fixed by filtering out data.frames in list with no additional columns than the "generics".
# REDCapCAST 25.3.1
* FIX: `as_factor()` now interprets empty variables with empty levels attribute as logicals to avoid returning factors with empty levels.
* NEW: `as_logical()`: interprets vectors with two levels as logical if values matches supplied list of logical pairs like "TRUE"/"FALSE", "Yes"/"No" or 1/2. Eases interpretation of data from databases with minimal metadata. Works on vectors and for data.frames. Interprets vectors with single value also matching to any of supplied levels (Chooses first match pair if several matches).
* NEW: `easy_redcap()`: new parameter `data_format` to specify data format as c("wide", "list", "redcap", "long"). For now "redcap" and "long" is treated equally. This was added to ease MMRM analyses. In that case, missing baseline values can be carried forward as "last observation carried forward" using the `tidyr::fill()` function specifying variables to fill. Interesting discussion on filling data [here on Stackoverflow](https://stackoverflow.com/a/13810615). `redcap_read_tables()` now has the option "none" for the `split_forms` parameter to allow not splitting the data.
* FIX: `ds2dd_detailed()`: The `convert_logicals` parameter has been turned off by default and logicals are now interpreted as field type "truefalse". Converting logicals to factors would result in the numeric values being 1 for FALSE and 2 for TRUE, which is opposite of the traditional notation and could lead to serous problems if not handled correctly. This should solve it.
# REDCapCAST 25.1.1
The newly introduced extension of `forcats::fct_drop()` has been corrected to work as intended as a method.

View file

@ -86,6 +86,11 @@ REDCap_split <- function(records,
metadata,
primary_table_name = "",
forms = c("repeating", "all")) {
# Processing metadata to reflect focused dataset
# metadata <- focused_metadata(metadata, names(records))
# Requires new testing setup. Not doing that now.
# Process user input
records <- process_user_input(records)
metadata <-

View file

@ -7,6 +7,8 @@
#' Please refer to parent functions for extended documentation.
#' To avoid redundancy calls and errors, functions are copy-pasted here
#'
#' Empty variables with empty levels attribute are interpreted as logicals
#'
#' @param x Object to coerce to a factor.
#' @param ... Other arguments passed down to method.
#' @param only_labelled Only apply to labelled columns?
@ -24,7 +26,14 @@
#' labels = c(Unknown = 9, Refused = 10),
#' class = "haven_labelled"
#' ) |>
#' as_factor()
#' as_factor() |> class()
#' structure(rep(NA,10),
#' class = c("labelled")
#' ) |>
#' as_factor() |> summary()
#'
#' rep(NA,10) |> as_factor()
#'
#' @importFrom forcats as_factor
#' @export
#' @name as_factor
@ -46,8 +55,6 @@ as_factor.logical <- function(x, ...) {
set_attr(x, labels, overwrite = FALSE)
}
#' @rdname as_factor
#' @export
as_factor.numeric <- function(x, ...) {
@ -121,7 +128,13 @@ as_factor.haven_labelled <- function(x, levels = c("default", "labels", "values"
x <- structure(x, label = label)
set_attr(x, labels_all, overwrite = FALSE)
out <- set_attr(x, labels_all, overwrite = FALSE)
if (all_na(out) & length(levels(out))==0){
as_factor.logical(out)
} else {
out
}
}
#' @export

116
R/as_logical.R Normal file
View file

@ -0,0 +1,116 @@
#' Interpret specific binary values as logicals
#'
#' @param x vector or data.frame
#' @param values list of values to interpret as logicals. First value is
#' @param ... ignored
#' interpreted as TRUE.
#'
#' @returns vector
#' @export
#'
#' @examples
#' c(sample(c("TRUE", "FALSE"), 20, TRUE), NA) |>
#' as_logical() |>
#' class()
#' ds <- dplyr::tibble(
#' B = factor(sample(c(1, 2), 20, TRUE)),
#' A = factor(sample(c("TRUE", "FALSE"), 20, TRUE)),
#' C = sample(c(3, 4), 20, TRUE),
#' D = factor(sample(c("In", "Out"), 20, TRUE))
#' )
#' ds |>
#' as_logical() |>
#' sapply(class)
#' ds$A |> class()
#' sample(c("TRUE",NA), 20, TRUE) |>
#' as_logical()
#' as_logical(0)
#' @name as_logical
as_logical <- function(x,
values = list(
c("TRUE", "FALSE"),
c("Yes", "No"),
c(1, 0),
c(1, 2)
),
...) {
UseMethod("as_logical")
}
#' @rdname as_logical
#' @export
as_logical.data.frame <- function(x,
values = list(
c("TRUE", "FALSE"),
c("Yes", "No"),
c(1, 0),
c(1, 2)
),
...) {
as.data.frame(lapply(x, \(.x){
as_logical.default(x = .x, values = values)
}))
}
#' @rdname as_logical
#' @export
as_logical.default <- function(x,
values = list(
c("TRUE", "FALSE"),
c("Yes", "No"),
c(1, 0),
c(1, 2)
),
...) {
label <- REDCapCAST::get_attr(x, "label")
# browser()
out <- c()
if (any(
c(
"character",
"factor",
"numeric"
) %in% class(x)
)){
if (length(unique(x[!is.na(x)])) == 2) {
if (is.factor(x)) {
match_index <- which(sapply(values, \(.x){
all(.x %in% levels(x))
}))
} else {
match_index <- which(sapply(values, \(.x){
all(.x %in% x)
}))
}
} else if (length(unique(x[!is.na(x)])) == 1){
if (is.factor(x)) {
match_index <- which(sapply(values, \(.x){
any(.x %in% levels(x))
}))
} else {
match_index <- which(sapply(values, \(.x){
any(.x %in% x)
}))
}
} else {
match_index <- c()
}
if (length(match_index) == 1) {
out <- x == values[[match_index]][1]
} else if (length(match_index) > 1) {
# If matching several, the first match is used.
out <- x == values[[match_index[1]]][1]
}
}
if (length(out) == 0) {
out <- x
}
if (!is.na(label)) {
out <- REDCapCAST::set_attr(out, label = label, attr = "label")
}
out
}

View file

@ -128,7 +128,6 @@ hms2character <- function(data) {
#' @examples
#' redcapcast_data$record_id <- seq_len(nrow(redcapcast_data))
#' ds2dd(redcapcast_data, include.column.names = TRUE)
ds2dd <-
function(ds,
record.id = "record_id",
@ -136,8 +135,7 @@ ds2dd <-
field.type = "text",
field.label = NULL,
include.column.names = FALSE,
metadata = names(REDCapCAST::redcapcast_meta)
) {
metadata = names(REDCapCAST::redcapcast_meta)) {
dd <- data.frame(matrix(ncol = length(metadata), nrow = ncol(ds)))
colnames(dd) <- metadata
@ -178,12 +176,15 @@ ds2dd <-
if (is.null(field.label)) {
dd[, "field_label"] <- dd[, "field_name"]
} else
} else {
dd[, "field_label"] <- field.label
}
if (include.column.names) {
list("DataDictionary" = dd, "Column names" = field.name)
} else dd
} else {
dd
}
}
@ -246,7 +247,10 @@ ds2dd <-
#' form.name = sample(c("b", "c"), size = 6, replace = TRUE, prob = rep(.5, 2))
#' ) |>
#' purrr::pluck("meta")
#' mtcars |> numchar2fct() |> ds2dd_detailed(add.auto.id = TRUE)
#' mtcars |>
#' dplyr::mutate(unknown = NA) |>
#' numchar2fct() |>
#' ds2dd_detailed(add.auto.id = TRUE)
#'
#' ## Using column name suffix to carry form name
#' data <- iris |>
@ -266,9 +270,10 @@ ds2dd_detailed <- function(data,
field.label.attr = "label",
field.validation = NULL,
metadata = names(REDCapCAST::redcapcast_meta),
convert.logicals = TRUE) {
short_names <- colnames(data) |> lapply(\(.x) cut_string_length(.x,l=90)) |> purrr::reduce(c)
convert.logicals = FALSE) {
short_names <- colnames(data) |>
lapply(\(.x) cut_string_length(.x, l = 90)) |>
purrr::reduce(c)
data <- stats::setNames(data, short_names)
@ -276,6 +281,10 @@ ds2dd_detailed <- function(data,
data <- data |>
## Converts logical to factor, which overwrites attributes
dplyr::mutate(dplyr::across(dplyr::where(is.logical), as_factor))
## Problematic example:
## as.logical(sample(0:1,10,TRUE)) |> as.factor() |> as.numeric()
## Possible solution would be to subtract values by 1, so
## "0, FALSE | 1, TRUE" like native REDCap
}
## Handles the odd case of no id column present
@ -369,9 +378,14 @@ ds2dd_detailed <- function(data,
dd$field_type <- "text"
dd <-
dd |> dplyr::mutate(field_type = dplyr::if_else(data_classes == "factor",
"radio", field_type
))
dd |> dplyr::mutate(
field_type = dplyr::case_match(
data_classes,
"factor"~"radio",
"logical"~"truefalse",
.default = field_type
)
)
} else {
if (length(field.type) == 1 || length(field.type) == nrow(dd)) {
dd$field_type <- field.type
@ -679,7 +693,6 @@ vec2choice <- function(data) {
#' "test" |> compact_vec()
#' sample(letters[1:9], 20, TRUE) |> compact_vec()
compact_vec <- function(data, nm.sep = ": ", val.sep = "; ") {
# browser()
if (all(is.na(data))) {
return(data)
}

View file

@ -26,11 +26,13 @@ get_api_key <- function(key.name, ...) {
#'
#' @param project.name The name of the current project (for key storage with
#' \link[keyring]{key_set}, using the default keyring)
#' @param widen.data argument to widen the exported data
#' @param widen.data argument to widen the exported data. [DEPRECATED], use
#' `data_format`instead
#' @param uri REDCap database API uri
#' @param raw_or_label argument passed on to
#' \link[REDCapCAST]{read_redcap_tables}. Default is "both" to get labelled
#' data.
#' @param data_format Choose the data
#' @param ... arguments passed on to \link[REDCapCAST]{read_redcap_tables}.
#'
#' @return data.frame or list depending on widen.data
@ -41,27 +43,54 @@ get_api_key <- function(key.name, ...) {
#' easy_redcap("My_new_project", fields = c("record_id", "age", "hypertension"))
#' }
easy_redcap <- function(project.name,
widen.data = TRUE,
uri,
raw_or_label = "both",
data_format = c("wide", "list", "redcap", "long"),
widen.data = NULL,
...) {
data_format <- match.arg(data_format)
# Interpretation of "widen.data" is kept and will override "data_format"
# for legacy sake
if (isTRUE(widen.data)) {
data_format <- "wide"
}
if (data_format %in% c("wide", "list")) {
split_action <- "all"
} else {
split_action <- "none"
}
key <- get_api_key(
key.name = paste0(project.name, "_REDCAP_API"),
prompt = "Provide REDCap API key:"
)
out <- read_redcap_tables(
redcap_data <- read_redcap_tables(
uri = uri,
token = key,
raw_or_label = raw_or_label,
split_forms = split_action,
...
)
if (widen.data) {
out <- out |>
# For now, long data format is just legacy REDCap
# All options are written out for future improvements
if (data_format == "wide") {
out <- redcap_data |>
redcap_wider() |>
suffix2label()
} else if (data_format == "list") {
# The read_redcap_tables() output is a list of tables (forms)
out <- redcap_data
} else if (data_format == "long") {
out <- redcap_data
} else if (data_format == "redcap") {
out <- redcap_data
}
out
}

View file

@ -26,7 +26,7 @@
#' \link[REDCapCAST]{fct_drop} to drop empty levels.
#'
#' @param split_forms Whether to split "repeating" or "all" forms, default is
#' all.
#' all. Give "none" to export native semi-long REDCap format
#' @param ... passed on to \link[REDCapR]{redcap_read}
#'
#' @return list of instruments
@ -43,10 +43,10 @@ read_redcap_tables <- function(uri,
events = NULL,
forms = NULL,
raw_or_label = c("raw", "label", "both"),
split_forms = "all",
split_forms = c("all", "repeating", "none"),
...) {
raw_or_label <- match.arg(raw_or_label, c("raw", "label", "both"))
split_forms <- match.arg(split_forms)
# Getting metadata
m <-
@ -56,8 +56,10 @@ read_redcap_tables <- function(uri,
fields_test <- fields %in% c(m$field_name, paste0(unique(m$form_name), "_complete"))
if (any(!fields_test)) {
print(paste0("The following field names are invalid: ",
paste(fields[!fields_test], collapse = ", "), "."))
print(paste0(
"The following field names are invalid: ",
paste(fields[!fields_test], collapse = ", "), "."
))
stop("Not all supplied field names are valid")
}
}
@ -67,8 +69,10 @@ read_redcap_tables <- function(uri,
forms_test <- forms %in% unique(m$form_name)
if (any(!forms_test)) {
print(paste0("The following form names are invalid: ",
paste(forms[!forms_test], collapse = ", "), "."))
print(paste0(
"The following form names are invalid: ",
paste(forms[!forms_test], collapse = ", "), "."
))
stop("Not all supplied form names are valid")
}
}
@ -82,8 +86,10 @@ read_redcap_tables <- function(uri,
event_test <- events %in% unique(arm_event_inst$data$unique_event_name)
if (any(!event_test)) {
print(paste0("The following event names are invalid: ",
paste(events[!event_test], collapse = ", "), "."))
print(paste0(
"The following event names are invalid: ",
paste(events[!event_test], collapse = ", "), "."
))
stop("Not all supplied event names are valid")
}
}
@ -123,15 +129,16 @@ read_redcap_tables <- function(uri,
# Processing metadata to reflect focused dataset
m <- focused_metadata(m, names(d))
# Splitting
out <- REDCap_split(d,
if (split_forms != "none") {
REDCap_split(d,
m,
forms = split_forms,
primary_table_name = ""
)
sanitize_split(out)
) |> sanitize_split()
} else {
d
}
}
@ -234,5 +241,3 @@ apply_factor_labels <- function(data,meta=NULL){
}
}) |> dplyr::bind_cols()
}

View file

@ -79,11 +79,35 @@ utils::globalVariables(c(
#' )
#' )
#' redcap_wider(list4)
#'
#' list5 <- list(
#' data.frame(
#' record_id = c(1, 2, 1, 2),
#' redcap_event_name = c("baseline", "baseline", "followup", "followup")
#' ),
#' data.frame(
#' record_id = c(1, 1, 1, 1, 2, 2, 2, 2),
#' redcap_event_name = c(
#' "baseline", "baseline", "followup", "followup",
#' "baseline", "baseline", "followup", "followup"
#' ),
#' redcap_repeat_instrument = "walk",
#' redcap_repeat_instance = c(1, 2, 1, 2, 1, 2, 1, 2),
#' dist = c(40, 32, 25, 33, 28, 24, 23, 36)
#' ),
#' data.frame(
#' record_id = c(1, 2),
#' redcap_event_name = c("baseline", "baseline"),
#' gender = c("male", "female")
#' )
#' )
#' redcap_wider(list5)
redcap_wider <-
function(data,
event.glue = "{.value}____{redcap_event_name}",
inst.glue = "{.value}____{redcap_repeat_instance}") {
# browser()
if (!is_repeated_longitudinal(data)) {
if (is.list(data)) {
if (length(data) == 1) {
@ -95,22 +119,37 @@ redcap_wider <-
out <- data
}
} else {
id.name <- do.call(c, lapply(data, names))[[1]]
## Cleaning instrument list to only include instruments holding other data
## than ID and generic columns
## This is to mitigate an issue when not exporting fields from the first
## instrument.
## Not taking this step would throw an error when pivoting.
instrument_names <- lapply(data, names)
id.name <- do.call(c, instrument_names)[[1]]
generic_names <- c(
id.name,
"redcap_event_name",
"redcap_repeat_instrument",
"redcap_repeat_instance"
)
semi_empty <- lapply(instrument_names,\(.x){
all(.x %in% generic_names)
}) |> unlist()
data <- data[!semi_empty]
l <- lapply(data, function(i) {
# browser()
rep_inst <- "redcap_repeat_instrument" %in% names(i)
if (rep_inst) {
k <- lapply(split(i, f = i[[id.name]]), function(j) {
cname <- colnames(j)
vals <-
cname[!cname %in% c(
id.name,
"redcap_event_name",
"redcap_repeat_instrument",
"redcap_repeat_instance"
)]
cname[!cname %in% generic_names]
s <- tidyr::pivot_wider(
j,
names_from = "redcap_repeat_instance",

View file

@ -1,7 +1,6 @@
<!-- badges: start -->
[![GitHub R package version](https://img.shields.io/github/r-package/v/agdamsbo/REDCapCAST)](https://github.com/agdamsbo/REDCapCAST) [![CRAN/METACRAN](https://img.shields.io/cran/v/REDCapCAST)](https://CRAN.R-project.org/package=REDCapCAST) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.8013984.svg)](https://doi.org/10.5281/zenodo.8013984) [![R-hub](https://github.com/agdamsbo/REDCapCAST/actions/workflows/rhub.yaml/badge.svg)](https://github.com/agdamsbo/REDCapCAST/actions/workflows/rhub.yaml) [![R-CMD-check](https://github.com/agdamsbo/REDCapCAST/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/agdamsbo/REDCapCAST/actions/workflows/R-CMD-check.yaml) [![Page deployed](https://github.com/agdamsbo/REDCapCAST/actions/workflows/pages/pages-build-deployment/badge.svg)](https://github.com/agdamsbo/REDCapCAST/actions/workflows/pages/pages-build-deployment) [![Codecov test coverage](https://codecov.io/gh/agdamsbo/REDCapCAST/branch/master/graph/badge.svg)](https://app.codecov.io/gh/agdamsbo/REDCapCAST?branch=master) [![CRAN downloads](https://cranlogs.r-pkg.org/badges/grand-total/REDCapCAST)](https://cran.r-project.org/package=REDCapCAST) [![Lifecycle: experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://lifecycle.r-lib.org/articles/stages.html)
[![GitHub R package version](https://img.shields.io/github/r-package/v/agdamsbo/REDCapCAST)](https://github.com/agdamsbo/REDCapCAST) [![CRAN/METACRAN](https://img.shields.io/cran/v/REDCapCAST)](https://CRAN.R-project.org/package=REDCapCAST) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.8013984.svg)](https://doi.org/10.5281/zenodo.8013984) [![R-hub](https://github.com/agdamsbo/REDCapCAST/actions/workflows/rhub.yaml/badge.svg)](https://github.com/agdamsbo/REDCapCAST/actions/workflows/rhub.yaml) [![R-CMD-check](https://github.com/agdamsbo/REDCapCAST/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/agdamsbo/REDCapCAST/actions/workflows/R-CMD-check.yaml) [![Page deployed](https://github.com/agdamsbo/REDCapCAST/actions/workflows/pages/pages-build-deployment/badge.svg)](https://github.com/agdamsbo/REDCapCAST/actions/workflows/pages/pages-build-deployment) [![CRAN downloads](https://cranlogs.r-pkg.org/badges/grand-total/REDCapCAST)](https://cran.r-project.org/package=REDCapCAST) [![Lifecycle: experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://lifecycle.r-lib.org/articles/stages.html) [![Codecov test coverage](https://codecov.io/gh/agdamsbo/REDCapCAST/graph/badge.svg)](https://app.codecov.io/gh/agdamsbo/REDCapCAST)
<!-- badges: end -->
# REDCapCAST package <img src="man/figures/logo.png" align="right"/>

View file

@ -1,5 +1,6 @@
── R CMD check results ─────────────────────────────────────────────────────────────────────── REDCapCAST 25.1.1 ────
Duration: 31.2s
── R CMD check results ───────────────────────────────────────────────────────────────────────────────── REDCapCAST 25.3.2 ────
Duration: 37.1s
0 errors ✔ | 0 warnings ✔ | 0 notes ✔

View file

@ -11,6 +11,7 @@ GithubActions
JSON
Lifecycle
METACRAN
MMRM
Nav
ORCID
POSIXct
@ -18,6 +19,7 @@ REDCap
REDCapR
REDCapRITS
REDCapTidieR
Stackoverflow
WD
al
api

View file

@ -63,6 +63,8 @@ ta loss in case of rich formatted and labelled data.
\details{
Please refer to parent functions for extended documentation.
To avoid redundancy calls and errors, functions are copy-pasted here
Empty variables with empty levels attribute are interpreted as logicals
}
\examples{
# will preserve all attributes
@ -77,5 +79,12 @@ structure(c(1, 2, 3, 2, 10, 9),
labels = c(Unknown = 9, Refused = 10),
class = "haven_labelled"
) |>
as_factor()
as_factor() |> class()
structure(rep(NA,10),
class = c("labelled")
) |>
as_factor() |> summary()
rep(NA,10) |> as_factor()
}

58
man/as_logical.Rd Normal file
View file

@ -0,0 +1,58 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/as_logical.R
\name{as_logical}
\alias{as_logical}
\alias{as_logical.data.frame}
\alias{as_logical.default}
\title{Interpret specific binary values as logicals}
\usage{
as_logical(
x,
values = list(c("TRUE", "FALSE"), c("Yes", "No"), c(1, 0), c(1, 2)),
...
)
\method{as_logical}{data.frame}(
x,
values = list(c("TRUE", "FALSE"), c("Yes", "No"), c(1, 0), c(1, 2)),
...
)
\method{as_logical}{default}(
x,
values = list(c("TRUE", "FALSE"), c("Yes", "No"), c(1, 0), c(1, 2)),
...
)
}
\arguments{
\item{x}{vector or data.frame}
\item{values}{list of values to interpret as logicals. First value is}
\item{...}{ignored
interpreted as TRUE.}
}
\value{
vector
}
\description{
Interpret specific binary values as logicals
}
\examples{
c(sample(c("TRUE", "FALSE"), 20, TRUE), NA) |>
as_logical() |>
class()
ds <- dplyr::tibble(
B = factor(sample(c(1, 2), 20, TRUE)),
A = factor(sample(c("TRUE", "FALSE"), 20, TRUE)),
C = sample(c(3, 4), 20, TRUE),
D = factor(sample(c("In", "Out"), 20, TRUE))
)
ds |>
as_logical() |>
sapply(class)
ds$A |> class()
sample(c("TRUE",NA), 20, TRUE) |>
as_logical()
as_logical(0)
}

View file

@ -16,7 +16,7 @@ ds2dd_detailed(
field.label.attr = "label",
field.validation = NULL,
metadata = names(REDCapCAST::redcapcast_meta),
convert.logicals = TRUE
convert.logicals = FALSE
)
}
\arguments{
@ -91,7 +91,10 @@ iris |>
form.name = sample(c("b", "c"), size = 6, replace = TRUE, prob = rep(.5, 2))
) |>
purrr::pluck("meta")
mtcars |> numchar2fct() |> ds2dd_detailed(add.auto.id = TRUE)
mtcars |>
dplyr::mutate(unknown = NA) |>
numchar2fct() |>
ds2dd_detailed(add.auto.id = TRUE)
## Using column name suffix to carry form name
data <- iris |>

View file

@ -4,20 +4,30 @@
\alias{easy_redcap}
\title{Secure API key storage and data acquisition in one}
\usage{
easy_redcap(project.name, widen.data = TRUE, uri, raw_or_label = "both", ...)
easy_redcap(
project.name,
uri,
raw_or_label = "both",
data_format = c("wide", "list", "redcap", "long"),
widen.data = NULL,
...
)
}
\arguments{
\item{project.name}{The name of the current project (for key storage with
\link[keyring]{key_set}, using the default keyring)}
\item{widen.data}{argument to widen the exported data}
\item{uri}{REDCap database API uri}
\item{raw_or_label}{argument passed on to
\link[REDCapCAST]{read_redcap_tables}. Default is "both" to get labelled
data.}
\item{data_format}{Choose the data}
\item{widen.data}{argument to widen the exported data. [DEPRECATED], use
`data_format`instead}
\item{...}{arguments passed on to \link[REDCapCAST]{read_redcap_tables}.}
}
\value{

View file

@ -12,7 +12,7 @@ read_redcap_tables(
events = NULL,
forms = NULL,
raw_or_label = c("raw", "label", "both"),
split_forms = "all",
split_forms = c("all", "repeating", "none"),
...
)
}
@ -40,7 +40,7 @@ read_redcap_tables(
\link[REDCapCAST]{fct_drop} to drop empty levels.}
\item{split_forms}{Whether to split "repeating" or "all" forms, default is
all.}
all. Give "none" to export native semi-long REDCap format}
\item{...}{passed on to \link[REDCapR]{redcap_read}}
}

View file

@ -83,4 +83,27 @@ list4 <- list(
)
)
redcap_wider(list4)
list5 <- list(
data.frame(
record_id = c(1, 2, 1, 2),
redcap_event_name = c("baseline", "baseline", "followup", "followup")
),
data.frame(
record_id = c(1, 1, 1, 1, 2, 2, 2, 2),
redcap_event_name = c(
"baseline", "baseline", "followup", "followup",
"baseline", "baseline", "followup", "followup"
),
redcap_repeat_instrument = "walk",
redcap_repeat_instance = c(1, 2, 1, 2, 1, 2, 1, 2),
dist = c(40, 32, 25, 33, 28, 24, 23, 36)
),
data.frame(
record_id = c(1, 2),
redcap_event_name = c("baseline", "baseline"),
gender = c("male", "female")
)
)
redcap_wider(list5)
}