FreesearchR/R/helpers.R

226 lines
5.1 KiB
R

#' Wrapper function to get function from character vector referring to function from namespace. Passed to 'do.call()'
#'
#' @description
#' This function follows the idea from this comment: https://stackoverflow.com/questions/38983179/do-call-a-function-in-r-without-loading-the-package
#' @param x function or function name
#'
#' @return function or character vector
#' @export
#'
#' @examples
#' getfun("stats::lm")
getfun <- function(x) {
if ("character" %in% class(x)) {
if (length(grep("::", x)) > 0) {
parts <- strsplit(x, "::")[[1]]
requireNamespace(parts[1])
getExportedValue(parts[1], parts[2])
}
} else {
x
}
}
#' Wrapper to save data in RDS, load into specified qmd and render
#'
#' @param data list to pass to qmd
#' @param ... Passed to `quarto::quarto_render()`
#'
#' @return output file name
#' @export
#'
write_quarto <- function(data, ...) {
# Exports data to temporary location
#
# I assume this is more secure than putting it in the www folder and deleting
# on session end
temp <- tempfile(fileext = ".rds")
readr::write_rds(data, file = temp)
## Specifying a output path will make the rendering fail
## Ref: https://github.com/quarto-dev/quarto-cli/discussions/4041
## Outputs to the same as the .qmd file
quarto::quarto_render(
execute_params = list(data.file = temp),
...
)
}
#' Flexible file import based on extension
#'
#' @param file file name
#' @param consider.na character vector of strings to consider as NAs
#'
#' @return tibble
#' @export
#'
#' @examples
#' read_input("https://raw.githubusercontent.com/agdamsbo/cognitive.index.lookup/main/data/sample.csv")
read_input <- function(file, consider.na = c("NA", '""', "")) {
ext <- tools::file_ext(file)
if (ext == "csv") {
df <- readr::read_csv(file = file, na = consider.na)
} else if (ext %in% c("xls", "xlsx")) {
df <- openxlsx2::read_xlsx(file = file, na.strings = consider.na)
} else if (ext == "dta") {
df <- haven::read_dta(file = file)
} else if (ext == "ods") {
df <- readODS::read_ods(path = file)
} else if (ext == "rds") {
df <- readr::read_rds(file = file)
} else {
stop("Input file format has to be on of:
'.csv', '.xls', '.xlsx', '.dta', '.ods' or '.rds'")
}
df
}
#' Convert string of arguments to list of arguments
#'
#' @description
#' Idea from the answer: https://stackoverflow.com/a/62979238
#'
#' @param string string to convert to list to use with do.call
#'
#' @return list
#' @export
#'
argsstring2list <- function(string) {
eval(parse(text = paste0("list(", string, ")")))
}
#' Factorize variables in data.frame
#'
#' @param data data.frame
#' @param vars variables to force factorize
#'
#' @return data.frame
#' @export
factorize <- function(data, vars) {
if (!is.null(vars)) {
data |>
dplyr::mutate(
dplyr::across(
dplyr::all_of(vars),
REDCapCAST::as_factor
)
)
} else {
data
}
}
dummy_Imports <- function() {
list(
MASS::as.fractions(),
broom::augment(),
broom.helpers::all_categorical(),
here::here(),
cardx::all_of(),
parameters::ci(),
DT::addRow(),
bslib::accordion()
)
# https://github.com/hadley/r-pkgs/issues/828
}
#' Title
#'
#' @param data data
#' @param output.format output
#' @param filename filename
#' @param ... passed on
#'
#' @returns data
#' @export
#'
file_export <- function(data, output.format = c("df", "teal", "list"), filename, ...) {
output.format <- match.arg(output.format)
filename <- gsub("-", "_", filename)
if (output.format == "teal") {
out <- within(
teal_data(),
{
assign(name, value |>
dplyr::bind_cols(.name_repair = "unique_quiet") |>
default_parsing())
},
value = data,
name = filename
)
datanames(out) <- filename
} else if (output.format == "df") {
out <- data |>
default_parsing()
} else if (output.format == "list") {
out <- list(
data = data,
name = filename
)
out <- c(out, ...)
}
out
}
#' Default data parsing
#'
#' @param data data
#'
#' @returns data.frame or tibble
#' @export
#'
#' @examples
#' mtcars |> str()
#' mtcars |>
#' default_parsing() |>
#' str()
default_parsing <- function(data) {
name_labels <- lapply(data,\(.x) REDCapCAST::get_attr(.x,attr = "label"))
out <- data |>
REDCapCAST::parse_data() |>
REDCapCAST::as_factor() |>
REDCapCAST::numchar2fct()
purrr::map2(out,name_labels,\(.x,.l){
if (!(is.na(.l) | .l=="")) {
REDCapCAST::set_attr(.x, .l, attr = "label")
} else {
attr(x = .x, which = "label") <- NULL
.x
}
# REDCapCAST::set_attr(data = .x, label = .l,attr = "label", overwrite = FALSE)
}) |> dplyr::bind_cols()
}
#' Remove NA labels
#'
#' @param data data
#'
#' @returns data.frame
#' @export
#'
#' @examples
#' ds <- mtcars |> lapply(\(.x) REDCapCAST::set_attr(.x,label=NA,attr = "label"))
#' ds |> remove_na_attr() |> str()
remove_na_attr <- function(data,attr="label"){
out <- data |> lapply(\(.x){
ls <- REDCapCAST::get_attr(data = .x,attr = attr)
if (is.na(ls) | ls == ""){
attr(x = .x, which = attr) <- NULL
}
.x
})
dplyr::bind_cols(out)
}