FreesearchR/inst/apps/freesearcheR/server.R

973 lines
24 KiB
R

library(readr)
library(MASS)
library(stats)
library(gt)
library(openxlsx2)
library(haven)
library(readODS)
require(shiny)
library(bslib)
library(assertthat)
library(dplyr)
library(quarto)
library(here)
library(broom)
library(broom.helpers)
# library(REDCapCAST)
library(easystats)
library(esquisse)
library(patchwork)
library(DHARMa)
library(apexcharter)
library(toastui)
library(datamods)
library(data.table)
library(IDEAFilter)
library(shinyWidgets)
library(DT)
library(gtsummary)
# library(freesearcheR)
# source("functions.R")
data(mtcars)
trial <- gtsummary::trial |> default_parsing()
# light <- custom_theme()
#
# dark <- custom_theme(bg = "#000",fg="#fff")
server <- function(input, output, session) {
## Listing files in www in session start to keep when ending and removing
## everything else.
files.to.keep <- list.files("www/")
output$docs_file <- shiny::renderUI({
# shiny::includeHTML("www/docs.html")
shiny::HTML(readLines("www/docs.html"))
})
##############################################################################
#########
######### Night mode (just very popular, not really needed)
#########
##############################################################################
# observeEvent(input$dark_mode,{
# session$setCurrentTheme(
# if (isTRUE(input$dark_mode)) dark else light
# )})
# observe({
# if(input$dark_mode==TRUE)
# session$setCurrentTheme(bs_theme_update(theme = custom_theme(version = 5)))
# if(input$dark_mode==FALSE)
# session$setCurrentTheme(bs_theme_update(theme = custom_theme(version = 5, bg = "#000",fg="#fff")))
# })
##############################################################################
#########
######### Setting reactive values
#########
##############################################################################
rv <- shiny::reactiveValues(
list = list(),
ds = NULL,
local_temp = NULL,
ready = NULL,
test = "no",
data_original = NULL,
data_temp = NULL,
data = NULL,
data_filtered = NULL,
models = NULL,
code = list()
)
##############################################################################
#########
######### Data import section
#########
##############################################################################
data_file <- import_file_server(
id = "file_import",
show_data_in = "popup",
trigger_return = "change",
return_class = "data.frame",
read_fns = list(
ods = import_ods,
dta = function(file) {
haven::read_dta(
file = file,
.name_repair = "unique_quiet"
)
},
# csv = function(file) {
# readr::read_csv(
# file = file,
# na = consider.na,
# name_repair = "unique_quiet"
# )
# },
csv = import_delim,
tsv = import_delim,
txt = import_delim,
xls = import_xls,
xlsx = import_xls,
rds = function(file) {
readr::read_rds(
file = file,
name_repair = "unique_quiet"
)
}
)
)
shiny::observeEvent(data_file$data(), {
shiny::req(data_file$data())
rv$data_temp <- data_file$data()
rv$code <- append_list(data = data_file$code(), list = rv$code, index = "import")
})
data_redcap <- m_redcap_readServer(
id = "redcap_import"
)
shiny::observeEvent(data_redcap(), {
# rv$data_original <- purrr::pluck(data_redcap(), "data")()
rv$data_temp <- data_redcap()
})
output$redcap_prev <- DT::renderDT(
{
DT::datatable(head(data_redcap(), 5),
# DT::datatable(head(purrr::pluck(data_redcap(), "data")(), 5),
caption = "First 5 observations"
)
},
server = TRUE
)
from_env <- datamods::import_globalenv_server(
id = "env",
trigger_return = "change",
btn_show_data = FALSE,
reset = reactive(input$hidden)
)
shiny::observeEvent(from_env$data(), {
shiny::req(from_env$data())
rv$data_temp <- from_env$data()
# rv$code <- append_list(data = from_env$code(),list = rv$code,index = "import")
})
output$import_var <- shiny::renderUI({
shiny::req(rv$data_temp)
preselect <- names(rv$data_temp)[sapply(rv$data_temp, missing_fraction) <= input$complete_cutoff / 100]
shinyWidgets::virtualSelectInput(
inputId = "import_var",
label = "Select variables to include",
selected = preselect,
choices = names(rv$data_temp),
updateOn = "close",
multiple = TRUE,
search = TRUE,
showValueAsTags = TRUE
)
})
shiny::observeEvent(
eventExpr = list(
input$import_var
),
handlerExpr = {
shiny::req(rv$data_temp)
rv$data_original <- rv$data_temp |>
dplyr::select(input$import_var) |>
# janitor::clean_names() |>
default_parsing()
}
)
shiny::observeEvent(rv$data_original, {
if (is.null(rv$data_original) | NROW(rv$data_original) == 0) {
shiny::updateActionButton(inputId = "act_start", disabled = TRUE)
} else {
shiny::updateActionButton(inputId = "act_start", disabled = FALSE)
}
})
##############################################################################
#########
######### Data modification section
#########
##############################################################################
shiny::observeEvent(
eventExpr = list(
rv$data_original,
input$complete_cutoff
),
handlerExpr = {
shiny::req(rv$data_original)
rv$data <- rv$data_original
}
)
## For now this solution work, but I would prefer to solve this with the above
shiny::observeEvent(input$reset_confirm,
{
if (isTRUE(input$reset_confirm)) {
shiny::req(rv$data_original)
rv$data <- rv$data_original
}
},
ignoreNULL = TRUE
)
shiny::observeEvent(input$data_reset, {
shinyWidgets::ask_confirmation(
cancelOnDismiss = TRUE,
inputId = "reset_confirm",
title = "Please confirm data reset?",
type = "warning"
)
})
# shiny::observeEvent(input$reset_confirm, {
# rv$data <- rv$data_original |> default_parsing()
# })
######### Overview
data_summary_server(
id = "data_summary",
data = shiny::reactive({
rv$data_filtered
}),
color.main = "#2A004E",
color.sec = "#C62300",
pagination = 20
)
#########
######### Modifications
#########
## Using modified version of the datamods::cut_variable_server function
## Further modifications are needed to have cut/bin options based on class of variable
## Could be defined server-side
shiny::observeEvent(
input$modal_variables,
modal_update_variables("modal_variables", title = "Modify factor levels")
)
######### Create factor
shiny::observeEvent(
input$modal_cut,
modal_cut_variable("modal_cut", title = "Modify factor levels")
)
data_modal_cut <- cut_variable_server(
id = "modal_cut",
data_r = shiny::reactive(rv$data)
)
shiny::observeEvent(data_modal_cut(), rv$data <- data_modal_cut())
######### Modify factor
shiny::observeEvent(
input$modal_update,
datamods::modal_update_factor(id = "modal_update")
)
data_modal_update <- datamods::update_factor_server(
id = "modal_update",
data_r = reactive(rv$data)
)
shiny::observeEvent(data_modal_update(), {
shiny::removeModal()
rv$data <- data_modal_update()
})
######### Create column
shiny::observeEvent(
input$modal_column,
datamods::modal_create_column(id = "modal_column", footer = "This is only for advanced users!")
)
data_modal_r <- datamods::create_column_server(
id = "modal_column",
data_r = reactive(rv$data)
)
shiny::observeEvent(
data_modal_r(),
{
rv$data <- data_modal_r()
}
)
######### Show result
tryCatch(
{
output$table_mod <- toastui::renderDatagrid({
shiny::req(rv$data)
# data <- rv$data
toastui::datagrid(
# data = rv$data # ,
data = data_filter(),
pagination = 10
# bordered = TRUE,
# compact = TRUE,
# striped = TRUE
)
})
},
warning = function(warn) {
showNotification(paste0(warn), type = "warning")
},
error = function(err) {
showNotification(paste0(err), type = "err")
}
)
output$code <- renderPrint({
attr(rv$data, "code")
})
# updated_data <- datamods::update_variables_server(
updated_data <- update_variables_server(
id = "modal_variables",
data = reactive(rv$data),
return_data_on_init = FALSE
)
output$original_str <- renderPrint({
str(rv$data_original)
})
output$modified_str <- renderPrint({
str(as.data.frame(rv$data_filtered) |>
REDCapCAST::set_attr(
label = NULL,
attr = "code"
))
})
shiny::observeEvent(updated_data(), {
rv$data <- updated_data()
})
# IDEAFilter has the least cluttered UI, but might have a License issue
data_filter <- IDEAFilter::IDEAFilter("data_filter", data = reactive(rv$data), verbose = TRUE)
shiny::observeEvent(
list(
shiny::reactive(rv$data),
shiny::reactive(rv$data_original),
data_filter(),
regression_vars(),
input$complete_cutoff
),
{
rv$data_filtered <- data_filter()
rv$list$data <- data_filter() |>
REDCapCAST::fct_drop()
}
)
shiny::observeEvent(
list(
shiny::reactive(rv$data),
shiny::reactive(rv$data_original),
data_filter(),
shiny::reactive(rv$data_filtered)
),
{
out <- gsub(
"filter", "dplyr::filter",
gsub(
"\\s{2,}", " ",
paste0(
capture.output(attr(rv$data_filtered, "code")),
collapse = " "
)
)
)
out <- strsplit(out, "%>%") |>
unlist() |>
(\(.x){
paste(c("data", .x[-1]), collapse = "|> \n ")
})()
rv$code <- append_list(data = out, list = rv$code, index = "filter")
}
)
# output$filtered_code <- shiny::renderPrint({
# out <- gsub(
# "filter", "dplyr::filter",
# gsub(
# "\\s{2,}", " ",
# paste0(
# capture.output(attr(rv$data_filtered, "code")),
# collapse = " "
# )
# )
# )
#
# out <- strsplit(out, "%>%") |>
# unlist() |>
# (\(.x){
# paste(c("data", .x[-1]), collapse = "|> \n ")
# })()
#
# cat(out)
# })
output$code_import <- shiny::renderPrint({
cat(rv$code$import)
})
output$code_data <- shiny::renderPrint({
attr(rv$data, "code")
})
output$code_filter <- shiny::renderPrint({
cat(rv$code$filter)
})
##############################################################################
#########
######### Data analyses Inputs
#########
##############################################################################
## Keep these "old" selection options as a simple alternative to the modification pane
output$include_vars <- shiny::renderUI({
shiny::selectizeInput(
inputId = "include_vars",
selected = NULL,
label = "Covariables to include",
choices = colnames(rv$data_filtered),
multiple = TRUE
)
})
output$outcome_var <- shiny::renderUI({
shiny::selectInput(
inputId = "outcome_var",
selected = NULL,
label = "Select outcome variable",
choices = colnames(rv$data_filtered),
multiple = FALSE
)
})
output$regression_type <- shiny::renderUI({
shiny::req(input$outcome_var)
shiny::selectizeInput(
inputId = "regression_type",
label = "Choose regression analysis",
## The below ifelse statement handles the case of loading a new dataset
choices = possible_functions(
data = dplyr::select(
rv$data_filtered,
ifelse(input$outcome_var %in% names(rv$data_filtered),
input$outcome_var,
names(rv$data_filtered)[1]
)
), design = "cross-sectional"
),
multiple = FALSE
)
})
output$factor_vars <- shiny::renderUI({
shiny::selectizeInput(
inputId = "factor_vars",
selected = colnames(rv$data_filtered)[sapply(rv$data_filtered, is.factor)],
label = "Covariables to format as categorical",
choices = colnames(rv$data_filtered),
multiple = TRUE
)
})
## Collected regression variables
regression_vars <- shiny::reactive({
if (is.null(input$include_vars)) {
out <- colnames(rv$data_filtered)
} else {
out <- unique(c(input$include_vars, input$outcome_var))
}
return(out)
})
output$strat_var <- shiny::renderUI({
shiny::selectInput(
inputId = "strat_var",
selected = "none",
label = "Select variable to stratify baseline",
choices = c(
"none",
rv$data_filtered |>
(\(.x){
lapply(.x, \(.c){
if (identical("factor", class(.c))) {
.c
}
}) |>
dplyr::bind_cols()
})() |>
colnames()
),
multiple = FALSE
)
})
output$plot_model <- shiny::renderUI({
shiny::req(rv$list$regression$tables)
shiny::selectInput(
inputId = "plot_model",
selected = "none",
label = "Select models to plot",
choices = names(rv$list$regression$tables),
multiple = TRUE
)
})
##############################################################################
#########
######### Descriptive evaluations
#########
##############################################################################
shiny::observeEvent(
# ignoreInit = TRUE,
list(
shiny::reactive(rv$list$data),
shiny::reactive(rv$data),
shiny::reactive(rv$data_original),
data_filter(),
input$strat_var,
input$include_vars,
input$add_p,
input$complete_cutoff
),
{
shiny::req(input$strat_var)
shiny::req(rv$list$data)
if (input$strat_var == "none" | !input$strat_var %in% names(rv$list$data)) {
by.var <- NULL
} else {
by.var <- input$strat_var
}
rv$list$table1 <-
rv$list$data |>
baseline_table(
fun.args =
list(
by = by.var
)
) |>
(\(.x){
if (!is.null(by.var)) {
.x |> gtsummary::add_overall()
} else {
.x
}
})() |>
(\(.x){
if (input$add_p == "yes" & !is.null(by.var)) {
.x |>
gtsummary::add_p() |>
gtsummary::bold_p()
} else {
.x
}
})()
# gtsummary::as_kable(rv$list$table1) |>
# readr::write_lines(file="./www/_table1.md")
}
)
output$outcome_var_cor <- shiny::renderUI({
columnSelectInput(
inputId = "outcome_var_cor",
selected = "none",
data = rv$list$data,
label = "Select outcome variable",
col_subset = c(
"none",
colnames(rv$list$data)
),
multiple = FALSE
)
})
output$table1 <- gt::render_gt({
shiny::req(rv$list$table1)
rv$list$table1 |>
gtsummary::as_gt() |>
gt::tab_header(gt::md("**Table 1: Baseline Characteristics**"))
})
data_correlations_server(
id = "correlations",
data = shiny::reactive({
shiny::req(rv$list$data)
out <- rv$list$data
if (!is.null(input$outcome_var_cor) && input$outcome_var_cor!="none"){
out <- out[!names(out) %in% input$outcome_var_cor]
}
out
}),
cutoff = shiny::reactive(input$cor_cutoff)
)
##############################################################################
#########
######### Data visuals
#########
##############################################################################
pl <- data_visuals_server("visuals", data = shiny::reactive(rv$data))
##############################################################################
#########
######### Regression model analyses
#########
##############################################################################
shiny::observeEvent(
input$load,
{
shiny::req(input$outcome_var)
# browser()
# Assumes all character variables can be formatted as factors
# data <- data_filter$filtered() |>
tryCatch(
{
## Which models to create should be decided by input
## Could also include
## imputed or
## minimally adjusted
model_lists <- list(
"Univariable" = regression_model_uv_list,
"Multivariable" = regression_model_list
) |>
lapply(\(.fun){
ls <- do.call(
.fun,
c(
list(data = rv$list$data |>
(\(.x){
.x[regression_vars()]
})()),
list(outcome.str = input$outcome_var),
list(fun.descr = input$regression_type)
)
)
})
# browser()
rv$list$regression$params <- get_fun_options(input$regression_type) |>
(\(.x){
.x[[1]]
})()
rv$list$regression$models <- model_lists
# names(rv$list$regression)
# rv$models <- lapply(model_lists, \(.x){
# .x$model
# })
},
warning = function(warn) {
showNotification(paste0(warn), type = "warning")
},
error = function(err) {
showNotification(paste0("Creating regression models failed with the following error: ", err), type = "err")
}
)
}
)
shiny::observeEvent(
ignoreInit = TRUE,
list(
rv$list$regression$models
),
{
shiny::req(rv$list$regression$models)
tryCatch(
{
rv$check <- lapply(rv$list$regression$models, \(.x){
.x$model
}) |>
purrr::pluck("Multivariable") |>
performance::check_model()
},
warning = function(warn) {
showNotification(paste0(warn), type = "warning")
},
error = function(err) {
showNotification(paste0("Running model assumptions checks failed with the following error: ", err), type = "err")
}
)
}
)
output$check <- shiny::renderPlot(
{
shiny::req(rv$check)
# browser()
# p <- plot(rv$check) +
# patchwork::plot_annotation(title = "Multivariable regression model checks")
p <- plot(rv$check) +
patchwork::plot_annotation(title = "Multivariable regression model checks")
for (i in seq_len(length(p))) {
p[[i]] <- p[[i]] + gg_theme_shiny()
}
p
# p + patchwork::plot_layout(ncol = 1, design = ggplot2::waiver())
# Generate checks in one column
# layout <- sapply(seq_len(length(p)), \(.x){
# patchwork::area(.x, 1)
# })
#
# p + patchwork::plot_layout(design = Reduce(c, layout))
# patchwork::wrap_plots(ncol=1) +
# patchwork::plot_annotation(title = 'Multivariable regression model checks')
},
height = 600,
alt = "Assumptions testing of the multivariable regression model"
)
shiny::observeEvent(
input$load,
{
shiny::req(rv$list$regression$models)
tryCatch(
{
out <- lapply(rv$list$regression$models, \(.x){
.x$model
}) |>
purrr::map(regression_table)
if (input$add_regression_p == "no") {
out <- out |>
lapply(\(.x){
.x |>
gtsummary::modify_column_hide(
column = "p.value"
)
})
}
rv$list$regression$tables <- out
# rv$list$regression$table <- out |>
# tbl_merge()
# gtsummary::as_kable(rv$list$regression$table) |>
# readr::write_lines(file="./www/_regression_table.md")
rv$list$input <- input
},
warning = function(warn) {
showNotification(paste0(warn), type = "warning")
},
error = function(err) {
showNotification(paste0("Creating a regression table failed with the following error: ", err), type = "err")
}
)
rv$ready <- "ready"
}
)
output$table2 <- gt::render_gt({
shiny::req(rv$list$regression$tables)
rv$list$regression$tables |>
tbl_merge() |>
gtsummary::as_gt() |>
gt::tab_header(gt::md(glue::glue("**Table 2: {rv$list$regression$params$descr}**")))
})
output$regression_plot <- shiny::renderPlot(
{
# shiny::req(rv$list$regression$plot)
shiny::req(input$plot_model)
out <- merge_long(rv$list$regression, input$plot_model) |>
plot.tbl_regression(
colour = "variable",
facet_col = "model"
)
out +
ggplot2::scale_y_discrete(labels = scales::label_wrap(15)) +
gg_theme_shiny()
# rv$list$regression$tables$Multivariable |>
# plot(colour = "variable") +
# ggplot2::scale_y_discrete(labels = scales::label_wrap(15)) +
# gg_theme_shiny()
},
height = 500,
alt = "Regression coefficient plot"
)
shiny::conditionalPanel(
condition = "output.uploaded == 'yes'",
)
##############################################################################
#########
######### Page navigation
#########
##############################################################################
shiny::observeEvent(input$act_start, {
bslib::nav_select(id = "main_panel", selected = "Data")
})
##############################################################################
#########
######### Reactivity
#########
##############################################################################
output$uploaded <- shiny::reactive({
if (is.null(rv$ds)) {
"no"
} else {
"yes"
}
})
shiny::outputOptions(output, "uploaded", suspendWhenHidden = FALSE)
output$ready <- shiny::reactive({
if (is.null(rv$ready)) {
"no"
} else {
"yes"
}
})
shiny::outputOptions(output, "ready", suspendWhenHidden = FALSE)
# Reimplement from environment at later time
# output$has_input <- shiny::reactive({
# if (rv$input) {
# "yes"
# } else {
# "no"
# }
# })
# shiny::outputOptions(output, "has_input", suspendWhenHidden = FALSE)
##############################################################################
#########
######### Downloads
#########
##############################################################################
# Could be rendered with other tables or should show progress
# Investigate quarto render problems
# On temp file handling: https://github.com/quarto-dev/quarto-cli/issues/3992
output$report <- downloadHandler(
filename = shiny::reactive({
paste0("report.", input$output_type)
}),
content = function(file, type = input$output_type) {
# shiny::req(rv$list$regression)
## Notification is not progressing
## Presumably due to missing
# Simplified for .rmd output attempt
format <- ifelse(type == "docx", "word_document", "odt_document")
shiny::withProgress(message = "Generating the report. Hold on for a moment..", {
rv$list |>
write_rmd(
output_format = format,
input = file.path(getwd(), "www/report.rmd")
)
# write_quarto(
# output_format = type,
# input = file.path(getwd(), "www/report.qmd")
# )
})
file.rename(paste0("www/report.", type), file)
}
)
output$data_modified <- downloadHandler(
filename = shiny::reactive({
paste0("modified_data.", input$data_type)
}),
content = function(file, type = input$data_type) {
if (type == "rds") {
readr::write_rds(rv$list$data, file = file)
} else if (type == "dta") {
haven::write_dta(as.data.frame(rv$list$data), path = file)
} else if (type == "csv") {
readr::write_csv(rv$list$data, file = file)
}
}
)
##############################################################################
#########
######### Clearing the session on end
#########
##############################################################################
session$onSessionEnded(function() {
cat("Session Ended\n")
files <- list.files("www/")
lapply(files[!files %in% files.to.keep], \(.x){
unlink(paste0("www/", .x), recursive = FALSE)
print(paste(.x, "deleted"))
})
})
}