FreesearchR/R/plot_euler.R

157 lines
4.6 KiB
R

#' Area proportional venn diagrams
#'
#' @description
#' This is slightly modified from https://gist.github.com/danlooo/d23d8bcf8856c7dd8e86266097404ded
#'
#' This functions uses eulerr::euler to plot area proportional venn diagramms
#' but plots it using ggplot2
#'
#' @param combinations set relationships as a named numeric vector, matrix, or
#' data.frame(See `eulerr::euler`)
#' @param show_quantities whether to show number of intersecting elements
#' @param show_labels whether to show set names
#' @param ... further arguments passed to eulerr::euler
#'
#' @include data_plots.R
ggeulerr <- function(
combinations,
show_quantities = TRUE,
show_labels = TRUE,
...) {
## Extracting labels
labs <- sapply(names(combinations),\(.x){
# browser()
get_label(combinations,.x)
})
data <-
## Set labels as variable names for nicer plotting
setNames(as.data.frame(combinations),labs) |>
eulerr::euler(...) |>
plot(quantities = show_quantities) |>
purrr::pluck("data")
tibble::as_tibble(data$ellipses, rownames = "Variables") |>
ggplot2::ggplot() +
ggforce::geom_ellipse(
mapping = ggplot2::aes(
x0 = h, y0 = k, a = a, b = b, angle = 0, fill = Variables
),
alpha = 0.5,
linewidth = 1.5
) +
ggplot2::geom_text(
data = {
data$centers |>
dplyr::mutate(
label = labels |> purrr::map2(quantities, ~ {
if (!is.na(.x) && !is.na(.y) && show_labels) {
paste0(.x, "\n", sprintf(.y, fmt = "%.4g"))
# glue::glue("{.x}\n{round(.y,0)}")
} else if (!is.na(.x) && show_labels) {
.x
} else if (!is.na(.y)) {
.y
} else {
""
}
})
)
},
mapping = ggplot2::aes(x = x, y = y, label = label),
size = 8
) +
ggplot2::theme(panel.grid = ggplot2::element_blank()) +
ggplot2::coord_fixed() +
ggplot2::scale_fill_hue()
}
#' Easily plot euler diagrams
#'
#' @param data data
#' @param x name of main variable
#' @param y name of secondary variables
#' @param z grouping variable
#' @param seed seed
#'
#' @returns patchwork object
#' @export
#'
#' @examples
#' data.frame(
#' A = sample(c(TRUE, TRUE, FALSE), 50, TRUE),
#' B = sample(c("A", "C"), 50, TRUE),
#' C = sample(c(TRUE, FALSE, FALSE, FALSE), 50, TRUE),
#' D = sample(c(TRUE, FALSE, FALSE, FALSE), 50, TRUE)
#' ) |> plot_euler("A", c("B", "C"), "D", seed = 4)
#' mtcars |> plot_euler("vs", "am", seed = 1)
#' mtcars |> plot_euler("vs", "am", "cyl", seed = 1)
#' stRoke::trial |>
#' dplyr::mutate(
#' mfi_cut = cut(mfi_6, c(0, 12, max(mfi_6, na.rm = TRUE))),
#' mdi_cut = cut(mdi_6, c(0, 20, max(mdi_6, na.rm = TRUE)))
#' ) |>
#' purrr::map2(
#' c(sapply(stRoke::trial, \(.x)REDCapCAST::get_attr(.x, attr = "label")), "Fatigue", "Depression"),
#' \(.x, .y){
#' REDCapCAST::set_attr(.x, .y, "label")
#' }
#' ) |>
#' dplyr::bind_cols() |>
#' plot_euler("mfi_cut", "mdi_cut")
#' stRoke::trial |>
#' plot_euler(pri="male", sec=c("hypertension"))
plot_euler <- function(data, pri, sec, ter = NULL, seed = 2103) {
set.seed(seed = seed)
if (!is.null(ter)) {
ds <- split(data, data[ter])
} else {
ds <- list(data)
}
out <- lapply(ds, \(.x){
.x[c(pri, sec)] |>
na.omit() |>
plot_euler_single()
})
wrap_plot_list(out, title = glue::glue(i18n$t("Grouped by {get_label(data,ter)}")))
}
#' Easily plot single euler diagrams
#'
#' @returns ggplot2 object
#' @export
#'
#' @examples
#' data.frame(
#' A = sample(c(TRUE, TRUE, FALSE), 50, TRUE),
#' B = sample(c("A", "C"), 50, TRUE),
#' C = sample(c(TRUE, FALSE, FALSE, FALSE), 50, TRUE),
#' D = sample(c(TRUE, FALSE, FALSE, FALSE), 50, TRUE)
#' ) |> plot_euler_single()
#' mtcars[c("vs", "am")] |> plot_euler_single()
plot_euler_single <- function(data) {
# if (any("categorical" %in% data_type(data))){
# shape <- "ellipse"
# } else {
# shape <- "circle"
# }
data |>
ggeulerr(shape = "circle") +
ggplot2::theme_void() +
ggplot2::theme(
legend.position = "none",
# panel.grid.major = element_blank(),
# panel.grid.minor = element_blank(),
axis.text.y = ggplot2::element_blank(),
axis.title.y = ggplot2::element_blank(),
text = ggplot2::element_text(size = 20),
axis.text = ggplot2::element_blank(),
# plot.title = element_blank(),
# panel.background = ggplot2::element_rect(fill = "white"),
plot.background = ggplot2::element_rect(fill = "white"),
panel.border = ggplot2::element_blank()
)
}