mirror of
https://github.com/agdamsbo/FreesearchR.git
synced 2025-09-12 18:09:39 +02:00
Some checks are pending
pkgdown.yaml / pkgdown (push) Waiting to run
63 lines
1.8 KiB
R
63 lines
1.8 KiB
R
% Generated by roxygen2: do not edit by hand
|
|
% Please edit documentation in R/wide2long.R
|
|
\name{wide2long}
|
|
\alias{wide2long}
|
|
\title{Alternative pivoting method for easily pivoting based on name pattern}
|
|
\usage{
|
|
wide2long(
|
|
data,
|
|
pattern,
|
|
type = c("prefix", "infix", "suffix"),
|
|
id.col = 1,
|
|
instance.name = "instance"
|
|
)
|
|
}
|
|
\arguments{
|
|
\item{data}{data}
|
|
|
|
\item{pattern}{pattern(s) to match. Character vector of length 1 or more.}
|
|
|
|
\item{type}{type of match. can be one of "prefix","infix" or "suffix".}
|
|
|
|
\item{id.col}{ID column. Will fill ID for all. Column name or numeric index.
|
|
Default is "1", first column.}
|
|
|
|
\item{instance.name}{}
|
|
}
|
|
\value{
|
|
data.frame
|
|
}
|
|
\description{
|
|
This function requires and assumes a systematic naming of variables.
|
|
For now only supports one level pivoting. Adding more levels would require
|
|
an added "ignore" string pattern or similarly. Example 2.
|
|
}
|
|
\examples{
|
|
data.frame(
|
|
1:20, sample(70:80, 20, TRUE),
|
|
sample(70:100, 20, TRUE),
|
|
sample(70:100, 20, TRUE),
|
|
sample(170:200, 20, TRUE)
|
|
) |>
|
|
setNames(c("id", "age", "weight_0", "weight_1", "height_1")) |>
|
|
wide2long(pattern = c("_0", "_1"), type = "suffix")
|
|
data.frame(
|
|
1:20, sample(70:80, 20, TRUE),
|
|
sample(70:100, 20, TRUE),
|
|
sample(70:100, 20, TRUE),
|
|
sample(170:200, 20, TRUE)
|
|
) |>
|
|
setNames(c("id", "age", "weight_0", "weight_a_1", "height_b_1")) |>
|
|
wide2long(pattern = c("_0", "_1"), type = "suffix")
|
|
# Optional filling of missing values by last observation carried forward
|
|
# Needed for mmrm analyses
|
|
long_missings |>
|
|
# Fills record ID assuming none are missing
|
|
tidyr::fill(record_id) |>
|
|
# Grouping by ID for the last step
|
|
dplyr::group_by(record_id) |>
|
|
# Filling missing data by ID
|
|
tidyr::fill(names(long_missings)[!names(long_missings) \%in\% new_names]) |>
|
|
# Remove grouping
|
|
dplyr::ungroup()
|
|
}
|