# project.aid::merge_scripts(list.files("R/",full.names = TRUE),dest = here::here("app/functions.R")) # source(here::here("app/functions.R")) # source("https://raw.githubusercontent.com/agdamsbo/webResearch/refs/heads/main/app/functions.R") library(readr) library(MASS) library(stats) library(gtsummary) library(gt) library(openxlsx2) library(haven) library(readODS) require(shiny) library(bslib) library(assertthat) library(dplyr) library(quarto) library(here) library(broom) library(broom.helpers) library(REDCapCAST) library(easystats) library(patchwork) library(DHARMa) library(datamods) library(toastui) library(IDEAFilter) library(shinyWidgets) library(DT) # if (!requireNamespace("webResearch")) { # devtools::install_github("agdamsbo/webResearch", quiet = TRUE, upgrade = "never") # } # library(webResearch) # source("functions.R") # light <- custom_theme() # # dark <- custom_theme(bg = "#000", # fg="#fff") server <- function(input, output, session) { ## Listing files in www in session start to keep when ending and removing ## everything else. files.to.keep <- list.files("www/") # observeEvent(input$dark_mode,{ # session$setCurrentTheme( # if (isTRUE(input$dark_mode)) dark else light # )}) output$docs_file <- renderUI({ # shiny::includeHTML("www/docs.html") HTML(readLines("www/docs.html")) }) rv <- shiny::reactiveValues( list = NULL, ds = NULL, input = exists("webResearch_data"), local_temp = NULL, ready = NULL, test = "no", data_original = NULL, data = NULL, data_filtered = NULL ) ############################################################################## ######### ######### Data import section ######### ############################################################################## data_file <- datamods::import_file_server( id = "file_import", show_data_in = "popup", trigger_return = "change", return_class = "data.frame", read_fns = list( ods = function(file) { readODS::read_ods(path = file) }, dta = function(file) { haven::read_dta(file = file) } ) ) shiny::observeEvent(data_file$data(), { shiny::req(data_file$data()) rv$data_original <- data_file$data() }) data_redcap <- m_redcap_readServer( id = "redcap_import", output.format = "list" ) shiny::observeEvent(data_redcap(), { rv$data_original <- purrr::pluck(data_redcap(), "data")() }) output$redcap_prev <- DT::renderDT( { DT::datatable(head(purrr::pluck(data_redcap(), "data")(), 5), caption = "First 5 observations" ) }, server = TRUE ) from_env <- import_globalenv_server( id = "env", trigger_return = "change", btn_show_data = FALSE, reset = reactive(input$hidden) ) shiny::observeEvent(from_env$data(), { shiny::req(from_env$data()) rv$data_original <- from_env$data() }) ds <- shiny::reactive({ # input$file1 will be NULL initially. After the user selects # and uploads a file, head of that data file by default, # or all rows if selected, will be shown. # if (v$input) { # out <- webResearch_data # } else if (input$source == "file") { # req(data_file$data()) # out <- data_file$data() # } else if (input$source == "redcap") { # req(purrr::pluck(data_redcap(), "data")()) # out <- purrr::pluck(data_redcap(), "data")() # } req(rv$data_original) rv$data_original <- rv$data_original |> REDCapCAST::parse_data() |> REDCapCAST::as_factor() |> REDCapCAST::numchar2fct() rv$ds <- "loaded" rv$data <- rv$data_original rv$data_original }) ############################################################################## ######### ######### Data modification section ######### ############################################################################## ######### Modifications shiny::observeEvent(rv$data_original, rv$data <- rv$data_original) shiny::observeEvent(input$data_reset, rv$data <- rv$data_original) ## Using modified version of the datamods::cut_variable_server function ## Further modifications are needed to have cut/bin options based on class of variable ## Could be defined server-side shiny::observeEvent(input$modal_cut, modal_cut_variable("modal_cut")) data_modal_cut <- cut_variable_server( id = "modal_cut", data_r = shiny::reactive(rv$data) ) shiny::observeEvent(data_modal_cut(), rv$data <- data_modal_cut()) shiny::observeEvent(input$modal_update, datamods::modal_update_factor("modal_update")) data_modal_update <- datamods::update_factor_server( id = "modal_update", data_r = reactive(rv$data) ) shiny::observeEvent(data_modal_update(), { shiny::removeModal() rv$data <- data_modal_update() }) # Show result output$table_mod <- toastui::renderDatagrid({ shiny::req(rv$data) # data <- rv$data toastui::datagrid( # data = rv$data # , data = data_filter() # bordered = TRUE, # compact = TRUE, # striped = TRUE ) }) output$code <- renderPrint({ attr(rv$data, "code") }) updated_data <- datamods::update_variables_server( id = "vars_update", data = reactive(rv$data), return_data_on_init = FALSE ) output$original_str <- renderPrint({ str(rv$data_original) }) output$modified_str <- renderPrint({ str(rv$data) }) observeEvent(updated_data(), { rv$data <- updated_data() }) # IDEAFilter has the least cluttered UI, but might have a License issue data_filter <- IDEAFilter::IDEAFilter("data_filter", data = reactive(rv$data), verbose = TRUE) # shiny::observeEvent(data_filter(), { # rv$data_filtered <- data_filter() # }) output$filtered_code <- shiny::renderPrint({ cat(gsub( "%>%", "|> \n ", gsub( "\\s{2,}", " ", gsub( "reactive(rv$data)", "data", paste0( capture.output(attr(data_filter(), "code")), collapse = " " ) ) ) )) }) ############################################################################## ######### ######### Data analyses section ######### ############################################################################## ## Keep these "old" selection options as a simple alternative to the modification pane output$include_vars <- shiny::renderUI({ shiny::selectizeInput( inputId = "include_vars", selected = NULL, label = "Covariables to include", choices = colnames(data_filter()), multiple = TRUE ) }) output$outcome_var <- shiny::renderUI({ shiny::selectInput( inputId = "outcome_var", selected = NULL, label = "Select outcome variable", choices = colnames(data_filter()), multiple = FALSE ) }) output$factor_vars <- shiny::renderUI({ shiny::selectizeInput( inputId = "factor_vars", selected = colnames(data_filter())[sapply(data_filter(), is.factor)], label = "Covariables to format as categorical", choices = colnames(data_filter()), multiple = TRUE ) }) base_vars <- shiny::reactive({ if (is.null(input$include_vars)) { out <- colnames(data_filter()) } else { out <- unique(c(input$include_vars, input$outcome_var)) } return(out) }) output$strat_var <- shiny::renderUI({ shiny::selectInput( inputId = "strat_var", selected = "none", label = "Select variable to stratify baseline", choices = c("none", colnames(data_filter()[base_vars()])), multiple = FALSE ) }) ## Have a look at column filters at some point ## There should be a way to use the filtering the filter data for further analyses ## Disabled for now, as the JS is apparently not isolated # output$data_table <- # DT::renderDT( # { # DT::datatable(ds()[base_vars()]) # }, # server = FALSE # ) # # output$data.classes <- gt::render_gt({ # shiny::req(input$file) # data.frame(matrix(sapply(ds(), \(.x){ # class(.x)[1] # }), nrow = 1)) |> # stats::setNames(names(ds())) |> # gt::gt() # }) shiny::observeEvent(input$act_start, { bslib::nav_select(id = "main_panel", selected = "Modifications") }) shiny::observeEvent( { input$load }, { shiny::req(input$outcome_var) # browser() # Assumes all character variables can be formatted as factors # data <- data_filter$filtered() |> data <- data_filter() |> dplyr::mutate(dplyr::across(dplyr::where(is.character), as.factor)) |> REDCapCAST::fct_drop.data.frame() |> factorize(vars = input$factor_vars) if (input$strat_var == "none") { by.var <- NULL } else { by.var <- input$strat_var } data <- data[base_vars()] # model <- data |> # regression_model( # outcome.str = input$outcome_var, # auto.mode = input$regression_auto == 1, # formula.str = input$regression_formula, # fun = input$regression_fun, # args.list = eval(parse(text = paste0("list(", input$regression_args, ")"))) # ) models <- list( "Univariable" = regression_model_uv, "Multivariable" = regression_model ) |> lapply(\(.fun){ do.call( .fun, c( list(data = data), list(outcome.str = input$outcome_var), list(formula.str = input$regression_formula), list(fun = input$regression_fun), list(args.list = eval(parse(text = paste0("list(", input$regression_args, ")")))) ) ) }) check <- purrr::pluck(models, "Multivariable") |> performance::check_model() rv$list <- list( data = data, check = check, table1 = data |> baseline_table( fun.args = list( by = by.var ) ) |> (\(.x){ if (!is.null(by.var)) { .x |> gtsummary::add_overall() } else { .x } })() |> (\(.x){ if (input$add_p == "yes") { .x |> gtsummary::add_p() |> gtsummary::bold_p() } else { .x } })(), table2 = models |> purrr::map(regression_table) |> tbl_merge(), input = input ) output$table1 <- gt::render_gt( rv$list$table1 |> gtsummary::as_gt() ) output$table2 <- gt::render_gt( rv$list$table2 |> gtsummary::as_gt() ) output$check <- shiny::renderPlot({ p <- plot(check) + patchwork::plot_annotation(title = "Multivariable regression model checks") p # Generate checks in one column # layout <- sapply(seq_len(length(p)), \(.x){ # patchwork::area(.x, 1) # }) # # p + patchwork::plot_layout(design = Reduce(c, layout)) # patchwork::wrap_plots(ncol=1) + # patchwork::plot_annotation(title = 'Multivariable regression model checks') rv$ready <- "ready" }) } ) shiny::conditionalPanel( condition = "output.uploaded == 'yes'", ) # observeEvent(input$act_start, { # nav_show(id = "overview",target = "Import" # ) # }) output$uploaded <- shiny::reactive({ if (is.null(rv$ds)) { "no" } else { "yes" } }) shiny::outputOptions(output, "uploaded", suspendWhenHidden = FALSE) output$ready <- shiny::reactive({ if (is.null(rv$ready)) { "no" } else { "yes" } }) shiny::outputOptions(output, "ready", suspendWhenHidden = FALSE) # Reimplement from environment at later time # output$has_input <- shiny::reactive({ # if (rv$input) { # "yes" # } else { # "no" # } # }) # shiny::outputOptions(output, "has_input", suspendWhenHidden = FALSE) # Could be rendered with other tables or should show progress # Investigate quarto render problems # On temp file handling: https://github.com/quarto-dev/quarto-cli/issues/3992 output$report <- downloadHandler( filename = shiny::reactive({ paste0("report.", input$output_type) }), content = function(file, type = input$output_type) { ## Notification is not progressing ## Presumably due to missing shiny::withProgress(message = "Generating the report. Hold on for a moment..", { rv$list |> write_quarto( output_format = type, input = file.path(getwd(), "www/report.qmd") ) }) file.rename(paste0("www/report.", type), file) } ) session$onSessionEnded(function() { cat("Session Ended\n") files <- list.files("www/") lapply(files[!files %in% files.to.keep], \(.x){ unlink(paste0("www/", .x), recursive = FALSE) print(paste(.x, "deleted")) }) }) }