
Alternative pivoting method for easily pivoting based on name pattern
Source:R/wide2long.R
wide2long.RdThis function requires and assumes a systematic naming of variables. For now only supports one level pivoting. Adding more levels would require an added "ignore" string pattern or similarly. Example 2.
Usage
wide2long(
data,
pattern,
type = c("prefix", "infix", "suffix"),
id.col = 1,
instance.name = "instance"
)Examples
data.frame(
1:20, sample(70:80, 20, TRUE),
sample(70:100, 20, TRUE),
sample(70:100, 20, TRUE),
sample(170:200, 20, TRUE)
) |>
setNames(c("id", "age", "weight_0", "weight_1", "height_1")) |>
wide2long(pattern = c("_0", "_1"), type = "suffix")
#> id age instance weight height
#> 1 1 70 0 100 NA
#> 2 1 NA 1 77 187
#> 3 2 77 0 81 NA
#> 4 2 NA 1 90 185
#> 5 3 77 0 75 NA
#> 6 3 NA 1 71 179
#> 7 4 75 0 85 NA
#> 8 4 NA 1 91 187
#> 9 5 74 0 74 NA
#> 10 5 NA 1 96 175
#> 11 6 73 0 84 NA
#> 12 6 NA 1 85 170
#> 13 7 74 0 95 NA
#> 14 7 NA 1 98 193
#> 15 8 78 0 87 NA
#> 16 8 NA 1 92 196
#> 17 9 77 0 77 NA
#> 18 9 NA 1 71 188
#> 19 10 73 0 70 NA
#> 20 10 NA 1 73 186
#> 21 11 78 0 72 NA
#> 22 11 NA 1 76 191
#> 23 12 77 0 89 NA
#> 24 12 NA 1 87 179
#> 25 13 77 0 84 NA
#> 26 13 NA 1 84 178
#> 27 14 76 0 73 NA
#> 28 14 NA 1 89 172
#> 29 15 80 0 72 NA
#> 30 15 NA 1 98 193
#> 31 16 78 0 81 NA
#> 32 16 NA 1 100 198
#> 33 17 79 0 76 NA
#> 34 17 NA 1 83 191
#> 35 18 77 0 74 NA
#> 36 18 NA 1 81 181
#> 37 19 73 0 92 NA
#> 38 19 NA 1 88 175
#> 39 20 70 0 87 NA
#> 40 20 NA 1 70 182
data.frame(
1:20, sample(70:80, 20, TRUE),
sample(70:100, 20, TRUE),
sample(70:100, 20, TRUE),
sample(170:200, 20, TRUE)
) |>
setNames(c("id", "age", "weight_0", "weight_a_1", "height_b_1")) |>
wide2long(pattern = c("_0", "_1"), type = "suffix")
#> id age instance weight weight_a height_b
#> 1 1 70 0 82 NA NA
#> 2 1 NA 1 NA 100 186
#> 3 2 77 0 87 NA NA
#> 4 2 NA 1 NA 72 181
#> 5 3 73 0 73 NA NA
#> 6 3 NA 1 NA 90 186
#> 7 4 71 0 84 NA NA
#> 8 4 NA 1 NA 91 183
#> 9 5 72 0 89 NA NA
#> 10 5 NA 1 NA 71 180
#> 11 6 80 0 97 NA NA
#> 12 6 NA 1 NA 71 178
#> 13 7 75 0 96 NA NA
#> 14 7 NA 1 NA 73 181
#> 15 8 73 0 83 NA NA
#> 16 8 NA 1 NA 99 182
#> 17 9 71 0 81 NA NA
#> 18 9 NA 1 NA 85 193
#> 19 10 70 0 80 NA NA
#> 20 10 NA 1 NA 97 176
#> 21 11 71 0 91 NA NA
#> 22 11 NA 1 NA 83 181
#> 23 12 73 0 79 NA NA
#> 24 12 NA 1 NA 71 197
#> 25 13 70 0 98 NA NA
#> 26 13 NA 1 NA 83 197
#> 27 14 74 0 96 NA NA
#> 28 14 NA 1 NA 82 171
#> 29 15 73 0 89 NA NA
#> 30 15 NA 1 NA 75 194
#> 31 16 76 0 88 NA NA
#> 32 16 NA 1 NA 93 192
#> 33 17 73 0 87 NA NA
#> 34 17 NA 1 NA 84 194
#> 35 18 71 0 90 NA NA
#> 36 18 NA 1 NA 90 174
#> 37 19 73 0 77 NA NA
#> 38 19 NA 1 NA 74 198
#> 39 20 78 0 99 NA NA
#> 40 20 NA 1 NA 76 172
# Optional filling of missing values by last observation carried forward
# Needed for mmrm analyses
long_missings |>
# Fills record ID assuming none are missing
tidyr::fill(record_id) |>
# Grouping by ID for the last step
dplyr::group_by(record_id) |>
# Filling missing data by ID
tidyr::fill(names(long_missings)[!names(long_missings) %in% new_names]) |>
# Remove grouping
dplyr::ungroup()
#> Error: object 'long_missings' not found