--- title: "On visuals" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{visuals} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE) ``` ```{r setup} library(FreesearchR) ``` ## Basic visualisations The goal of ***FreesearchR*** is to keep things simple. Visuals can get very complicated. We provide a selection of plots, that helps visualise typical clinical and will be enough for most use cases, and for publishing to most journals. If you want to go further, have a look at these sites with suggestions and sample code for data plotting: - [*R* Charts](https://r-charts.com/): Extensive gallery with great plots - [*R* Graph gallery](https://r-graph-gallery.com/): Another gallery with great graphs - [graphics principles](https://graphicsprinciples.github.io/): Easy to follow recommendations for clear visuals. ### Available plots Below are the available plot types listed. ```{r echo = FALSE, eval = TRUE} c("continuous", "dichotomous", "categorical") |> lapply(\(.x){ dplyr::bind_cols( dplyr::tibble("Data type"=.x), supported_plots() |> lapply(\(.y){ if (.x %in% .y$primary.type){ .y[c("descr","note")]|> dplyr::bind_cols() } })|> dplyr::bind_rows() |> setNames(c("Plot type","Description"))) }) |> dplyr::bind_rows() |> knitr::kable() ```