Compare commits

..

23 commits

Author SHA1 Message Date
136480ca3d
updated translation strings
Some checks are pending
pkgdown.yaml / pkgdown (push) Waiting to run
2025-09-11 15:21:04 +02:00
013fc19d04
chore: translation updates
Some checks are pending
pkgdown.yaml / pkgdown (push) Waiting to run
2025-09-10 14:56:43 +02:00
44d13eda89
updated translations 2025-09-10 13:12:37 +02:00
545874f71b
feat: introduction of validation alerts 2025-09-10 12:00:24 +02:00
96e08e44d8
feat: starting to implement translations throughout the UI 2025-09-10 12:00:03 +02:00
7fde4bde46
version bump
Some checks failed
pkgdown.yaml / pkgdown (push) Has been cancelled
2025-08-27 12:46:44 +02:00
42cc9e7660
ready for docker update 2025-08-27 12:45:02 +02:00
fb8ed79ac9
updated docs 2025-08-27 12:36:22 +02:00
898ba12856
chore: updated Overview submenu to Overview and filter 2025-08-27 11:13:17 +02:00
ca29847450
fix: fixed submenu fold out 2025-08-27 11:11:00 +02:00
731a09e390
chore: Updating renv 2025-08-21 11:39:39 +02:00
f4c6ff3635
feat: Include the NHANES dataset for exploration and experimentation 2025-08-21 11:39:26 +02:00
67cfc31304
new version
Some checks failed
pkgdown.yaml / pkgdown (push) Has been cancelled
2025-08-08 14:08:44 +02:00
7fceb96a83
version bump
Some checks are pending
pkgdown.yaml / pkgdown (push) Waiting to run
2025-08-08 11:49:18 +02:00
62b5d7a668
fefat: fixed Euler plotting without axis text 2025-08-08 11:49:09 +02:00
ca65bca2f8
feat: suppress warnings when plotting violin plots 2025-08-08 11:47:55 +02:00
46db0bd5e4
feat: even more arguments available when using wrap_plot_list 2025-08-08 11:47:30 +02:00
d700658f5c
rendering docs 2025-08-08 11:20:11 +02:00
cff21406bb
feat: passes additional arguments in wrap_plots_list() to patchwork::wrap_plots() and allows specification of axes to align in align_axes() 2025-08-08 11:19:55 +02:00
ab189bf59a
correct ui element
Some checks failed
pkgdown.yaml / pkgdown (push) Has been cancelled
2025-07-22 20:16:47 +02:00
f60930cc03
updated docs 2025-07-22 20:00:41 +02:00
a3791af81c
ui elements in separate function call to allow insertion of panels
Some checks failed
pkgdown.yaml / pkgdown (push) Has been cancelled
2025-07-04 10:10:51 +02:00
5c8d84fccd
JS in separate file to autohide dropdowns on navigation - new dev version
Some checks are pending
pkgdown.yaml / pkgdown (push) Waiting to run
2025-07-03 20:26:35 +02:00
67 changed files with 5426 additions and 2683 deletions

1
.gitignore vendored
View file

@ -15,3 +15,4 @@ app_stable
app
page
demo
visuals

View file

@ -9,7 +9,7 @@ type: software
license: AGPL-3.0-or-later
title: 'FreesearchR: A free and open-source browser based data analysis tool for researchers
with publication ready output'
version: 25.7.1
version: 25.8.3
doi: 10.5281/zenodo.14527429
identifiers:
- type: url
@ -361,7 +361,7 @@ references:
authors:
- family-names: Lüdecke
given-names: Daniel
email: d.luedecke@uke.de
email: officialeasystats@gmail.com
orcid: https://orcid.org/0000-0002-8895-3206
- family-names: Makowski
given-names: Dominique
@ -409,7 +409,7 @@ references:
authors:
- family-names: Lüdecke
given-names: Daniel
email: d.luedecke@uke.de
email: officialeasystats@gmail.com
orcid: https://orcid.org/0000-0002-8895-3206
- family-names: Makowski
given-names: Dominique
@ -1002,6 +1002,55 @@ references:
email: russell-lenth@uiowa.edu
year: '2025'
doi: 10.32614/CRAN.package.emmeans
- type: software
title: readxl
abstract: 'readxl: Read Excel Files'
notes: Imports
url: https://readxl.tidyverse.org
repository: https://CRAN.R-project.org/package=readxl
authors:
- family-names: Wickham
given-names: Hadley
email: hadley@posit.co
orcid: https://orcid.org/0000-0003-4757-117X
- family-names: Bryan
given-names: Jennifer
email: jenny@posit.co
orcid: https://orcid.org/0000-0002-6983-2759
year: '2025'
doi: 10.32614/CRAN.package.readxl
- type: software
title: NHANES
abstract: 'NHANES: Data from the US National Health and Nutrition Examination Study'
notes: Imports
repository: https://CRAN.R-project.org/package=NHANES
authors:
- family-names: Pruim
given-names: Randall
email: rpruim@calvin.edu
year: '2025'
doi: 10.32614/CRAN.package.NHANES
- type: software
title: shiny.i18n
abstract: 'shiny.i18n: Shiny Applications Internationalization'
notes: Imports
url: https://appsilon.github.io/shiny.i18n/
repository: https://CRAN.R-project.org/package=shiny.i18n
authors:
- family-names: Nowicki
given-names: Jakub
email: opensource+kuba@appsilon.com
- family-names: Krzemiński
given-names: Dominik
email: raymon92@gmail.com
- family-names: Igras
given-names: Krystian
email: krystian8207@gmail.com
- family-names: Sobolewski
given-names: Jakub
email: jakub.sobolewski@appsilon.com
year: '2025'
doi: 10.32614/CRAN.package.shiny.i18n
- type: software
title: styler
abstract: 'styler: Non-Invasive Pretty Printing of R Code'

View file

@ -1,6 +1,6 @@
Package: FreesearchR
Title: A free and open-source browser based data analysis tool for researchers with publication ready output
Version: 25.7.1
Version: 25.8.3
Authors@R: c(
person("Andreas Gammelgaard", "Damsbo",email="agdamsbo@clin.au.dk", role = c("aut", "cre"),
comment = c(ORCID = "0000-0002-7559-1154")),
@ -64,7 +64,10 @@ Imports:
RcppArmadillo,
ggcorrplot,
shinyjs,
emmeans
emmeans,
readxl,
NHANES,
shiny.i18n
Suggests:
styler,
devtools,

View file

@ -78,10 +78,13 @@ export(line_break)
export(list_allowed_operations)
export(m_redcap_readServer)
export(m_redcap_readUI)
export(make_validation)
export(make_validation_alerts)
export(merge_expression)
export(merge_long)
export(missing_fraction)
export(missings_apex_plot)
export(missings_validate)
export(modal_create_column)
export(modal_cut_variable)
export(modal_update_factor)
@ -124,11 +127,14 @@ export(supported_plots)
export(symmetrical_scale_x_log10)
export(tbl_merge)
export(type_icons)
export(ui_elements)
export(unique_short)
export(update_factor_server)
export(update_factor_ui)
export(update_variables_server)
export(update_variables_ui)
export(validation_server)
export(validation_ui)
export(vectorSelectInput)
export(vertical_stacked_bars)
export(visual_summary)

31
NEWS.md
View file

@ -1,4 +1,33 @@
# FreesearchR 25.7.1 - DEV
# FreesearchR 25.8.3 - DEV
*NEW* Language has been revised to make the app more accessible and easier to understand.
*NEW* Initial and very rudimentary translation for Danish and Swahili is introduced. Other languages can be added as well.
*NEW* Alerts as to guide on select important steps and aspects are introduced. This is expected to expand.
# FreesearchR 25.8.2
- *NEW* Including the [NHANES](https://cran.r-project.org/web/packages/NHANES/refman/NHANES.html#NHANES) dataset for experimentation.
- *BUG* Improved JS to correctly handle menu drop downs on mobile devices
- *DOCS* Updated "Prepare > Overview" to "Prepare > Overview and filter" to better reflect options.
# FreesearchR 25.8.1
- *NEW* improved the use of `wrap_plot_list()` to pass on additional arguments to `patchwork::wrap_plots()` and allowed to specify axes to align in `align_axes()`.
- *FIX* fixed axis text printed in Euler diagrams
# FreesearchR 25.7.2
- *FIX* refining hiding drop downs. All JavaScript is now in separate file. Coded with GAI help from claude.ai.
- *FIX* refined iconography and navigation
- *FIX* updated intro and docs.
# FreesearchR 25.7.1
- *NEW* UI overhaul and navigation update. The interface is simplified to clearly show the relationship between panels and sub-items by abandoning multiple levels on panel to instead show a drop-down menu. This also results in simplified sidebar menus with room to add more controls in the future.

View file

@ -1 +1 @@
app_version <- function()'25.7.1'
app_version <- function()'25.8.3'

View file

@ -16,9 +16,13 @@ data_correlations_ui <- function(id, ...) {
#'
#' @param id id
#' @param data data
#' @param color.main main color
#' @param color.sec secondary color
#' @param include.class character vector of classes to include. Default is NULL
#' @param cutoff numeric
#' @param warning_str Character string. Exposed to allow dynamic translations
#' @param warning_no_str Character string. Exposed to allow dynamic translations
#' @param and_strCharacter string. Exposed to allow dynamic translations
#' @param ... arguments passed to toastui::datagrid
#'
#' @name data-correlations
@ -28,6 +32,9 @@ data_correlations_server <- function(id,
data,
include.class = NULL,
cutoff = .7,
warning_str = i18n$t("The following variable pairs are highly correlated: {sentence_paste(.x,and_str)}.\nConsider excluding one {more}from the dataset to ensure variables are independent."),
warning_no_str = i18n$t("No variables have a correlation measure above the threshold."),
and_str = i18n$t("and"),
...) {
shiny::moduleServer(
id = id,
@ -59,17 +66,17 @@ data_correlations_server <- function(id,
shiny::req(cutoff)
pairs <- correlation_pairs(rv$data(), threshold = cutoff())
more <- ifelse(nrow(pairs) > 1, "from each pair ", "")
more <- ifelse(nrow(pairs) > 1, i18n$t("from each pair"), "")
if (nrow(pairs) == 0) {
out <- glue::glue("No variables have a correlation measure above the threshold.")
out <- glue::glue(warning_no_str)
} else {
out <- pairs |>
apply(1, \(.x){
glue::glue("'{.x[1]}'x'{.x[2]}'({round(as.numeric(.x[3]),2)})")
glue::glue("'{.x[1]}'x'{.x[2]}' ({round(as.numeric(.x[3]),2)})")
}) |>
(\(.x){
glue::glue("The following variable pairs are highly correlated: {sentence_paste(.x)}.\nConsider excluding one {more}from the dataset to ensure variables are independent.")
glue::glue(warning_str)
})()
}
out

View file

@ -63,7 +63,7 @@ create_column_ui <- function(id) {
width = 6,
textInput(
inputId = ns("new_column"),
label = i18n("New column name:"),
label = i18n$t("New column name:"),
value = "new_column1",
width = "100%"
)
@ -72,7 +72,7 @@ create_column_ui <- function(id) {
width = 6,
shinyWidgets::virtualSelectInput(
inputId = ns("group_by"),
label = i18n("Group calculation by:"),
label = i18n$t("Group calculation by:"),
choices = NULL,
multiple = TRUE,
disableSelectAll = TRUE,
@ -83,7 +83,7 @@ create_column_ui <- function(id) {
),
shiny::textAreaInput(
inputId = ns("expression"),
label = i18n("Enter an expression to define new column:"),
label = i18n$t("Enter an expression to define new column:"),
value = "",
width = "100%",
rows = 6
@ -91,7 +91,7 @@ create_column_ui <- function(id) {
tags$i(
class = "d-block",
phosphoricons::ph("info"),
datamods::i18n("Click on a column name to add it to the expression:")
i18n$t("Click on a column name to add it to the expression:")
),
uiOutput(outputId = ns("columns")),
uiOutput(outputId = ns("feedback")),
@ -105,7 +105,7 @@ create_column_ui <- function(id) {
actionButton(
inputId = ns("compute"),
label = tagList(
phosphoricons::ph("gear"), i18n("Create column")
phosphoricons::ph("gear"), i18n$t("Create column")
),
class = "btn-outline-primary",
width = "100%"
@ -140,9 +140,9 @@ create_column_server <- function(id,
info_alert <- shinyWidgets::alert(
status = "info",
phosphoricons::ph("question"),
datamods::i18n("Choose a name for the column to be created or modified,"),
datamods::i18n("then enter an expression before clicking on the button above to validate or on "),
phosphoricons::ph("trash"), datamods::i18n("to delete it.")
i18n$t("Choose a name for the column to be created or modified,"),
i18n$t("then enter an expression before clicking on the button above to validate or on "),
phosphoricons::ph("trash"), i18n$t("to delete it.")
)
rv <- reactiveValues(
@ -187,7 +187,7 @@ create_column_server <- function(id,
if (input$new_column == "") {
rv$feedback <- shinyWidgets::alert(
status = "warning",
phosphoricons::ph("warning"), datamods::i18n("New column name cannot be empty")
phosphoricons::ph("warning"), i18n$t("New column name cannot be empty")
)
}
})
@ -252,7 +252,7 @@ list_allowed_operations <- function() {
#'
#' @rdname create-column
modal_create_column <- function(id,
title = i18n("Create a new column"),
title = i18n$t("Create a new column"),
easyClose = TRUE,
size = "l",
footer = NULL) {
@ -277,7 +277,7 @@ modal_create_column <- function(id,
#' @importFrom htmltools tagList
#' @rdname create-column
winbox_create_column <- function(id,
title = i18n("Create a new column"),
title = i18n$t("Create a new column"),
options = shinyWidgets::wbOptions(),
controls = shinyWidgets::wbControls()) {
ns <- NS(id)
@ -311,7 +311,7 @@ try_compute_column <- function(expression,
}
funs <- unlist(c(extract_calls(parsed), lapply(parsed, extract_calls)), recursive = TRUE)
if (!are_allowed_operations(funs, allowed_operations)) {
return(datamods:::alert_error(datamods::i18n("Some operations are not allowed")))
return(datamods:::alert_error(i18n$t("Some operations are not allowed")))
}
if (!isTruthy(by)) {
result <- try(
@ -351,7 +351,7 @@ try_compute_column <- function(expression,
)
shinyWidgets::alert(
status = "success",
phosphoricons::ph("check"), datamods::i18n("Column added!")
phosphoricons::ph("check"), i18n$t("Column added!")
)
}
@ -421,7 +421,7 @@ make_choices_with_infos <- function(data) {
# NULL
# }
description <- if (is.atomic(values)) {
paste(i18n("Unique values:"), data.table::uniqueN(values))
paste(i18n$t("Unique values:"), data.table::uniqueN(values))
} else {
""
}

View file

@ -208,7 +208,7 @@ cut_variable_ui <- function(id) {
width = 3,
shinyWidgets::virtualSelectInput(
inputId = ns("variable"),
label = datamods:::i18n("Variable to cut:"),
label = i18n$t("Variable to cut:"),
choices = NULL,
width = "100%"
)
@ -221,7 +221,7 @@ cut_variable_ui <- function(id) {
width = 3,
numericInput(
inputId = ns("n_breaks"),
label = datamods:::i18n("Number of breaks:"),
label = i18n$t("Number of breaks:"),
value = 3,
min = 2,
max = 12,
@ -232,12 +232,12 @@ cut_variable_ui <- function(id) {
width = 3,
checkboxInput(
inputId = ns("right"),
label = datamods:::i18n("Close intervals on the right"),
label = i18n$t("Close intervals on the right"),
value = TRUE
),
checkboxInput(
inputId = ns("include_lowest"),
label = datamods:::i18n("Include lowest value"),
label = i18n$t("Include lowest value"),
value = TRUE
)
)
@ -251,7 +251,7 @@ cut_variable_ui <- function(id) {
toastui::datagridOutput2(outputId = ns("count")),
actionButton(
inputId = ns("create"),
label = tagList(phosphoricons::ph("scissors"), datamods:::i18n("Create factor variable")),
label = tagList(phosphoricons::ph("scissors"), i18n$t("Create factor variable")),
class = "btn-outline-primary float-end"
),
tags$div(class = "clearfix")
@ -321,7 +321,7 @@ cut_variable_server <- function(id, data_r = reactive(NULL)) {
shinyWidgets::noUiSliderInput(
inputId = session$ns("fixed_brks"),
label = datamods:::i18n("Fixed breaks:"),
label = i18n$t("Fixed breaks:"),
min = lower,
max = upper,
value = brks,
@ -376,7 +376,7 @@ cut_variable_server <- function(id, data_r = reactive(NULL)) {
shinyWidgets::virtualSelectInput(
inputId = session$ns("method"),
label = datamods:::i18n("Method:"),
label = i18n$t("Method:"),
choices = choices,
selected = NULL,
width = "100%"
@ -570,7 +570,7 @@ cut_variable_server <- function(id, data_r = reactive(NULL)) {
#'
#' @rdname cut-variable
modal_cut_variable <- function(id,
title = datamods:::i18n("Convert Numeric to Factor"),
title = i18n$t("Convert Numeric to Factor"),
easyClose = TRUE,
size = "l",
footer = NULL) {

View file

@ -20,7 +20,7 @@ data_visuals_ui <- function(id, tab_title = "Plots", ...) {
title = "Creating plot",
icon = bsicons::bs_icon("graph-up"),
shiny::uiOutput(outputId = ns("primary")),
shiny::helpText('Only non-text variables are available for plotting. Go the "Data" to reclass data to plot.'),
shiny::helpText(i18n$t('Only non-text variables are available for plotting. Go the "Data" to reclass data to plot.')),
shiny::tags$br(),
shiny::uiOutput(outputId = ns("type")),
shiny::uiOutput(outputId = ns("secondary")),
@ -28,19 +28,19 @@ data_visuals_ui <- function(id, tab_title = "Plots", ...) {
shiny::br(),
shiny::actionButton(
inputId = ns("act_plot"),
label = "Plot",
label = i18n$t("Plot"),
width = "100%",
icon = shiny::icon("palette"),
disabled = FALSE
),
shiny::helpText('Adjust settings, then press "Plot".')
shiny::helpText(i18n$t('Adjust settings, then press "Plot".'))
),
bslib::accordion_panel(
title = "Download",
icon = bsicons::bs_icon("download"),
shinyWidgets::noUiSliderInput(
inputId = ns("height_slide"),
label = "Plot height (mm)",
label = i18n$t("Plot height (mm)"),
min = 50,
max = 300,
value = 100,
@ -58,7 +58,7 @@ data_visuals_ui <- function(id, tab_title = "Plots", ...) {
# ),
shinyWidgets::noUiSliderInput(
inputId = ns("width"),
label = "Plot width (mm)",
label = i18n$t("Plot width (mm)"),
min = 50,
max = 300,
value = 100,
@ -68,7 +68,7 @@ data_visuals_ui <- function(id, tab_title = "Plots", ...) {
),
shiny::selectInput(
inputId = ns("plot_type"),
label = "File format",
label = i18n$t("File format"),
choices = list(
"png",
"tiff",
@ -82,7 +82,7 @@ data_visuals_ui <- function(id, tab_title = "Plots", ...) {
# Button
shiny::downloadButton(
outputId = ns("download_plot"),
label = "Download plot",
label = i18n$t("Download plot"),
icon = shiny::icon("download")
)
)
@ -225,8 +225,8 @@ data_visuals_server <- function(id,
inputId = ns("primary"),
col_subset = names(data())[sapply(data(), data_type) != "text"],
data = data,
placeholder = "Select variable",
label = "Response variable",
placeholder = i18n$t("Select variable"),
label = i18n$t("Response variable"),
multiple = FALSE
)
})
@ -263,7 +263,7 @@ data_visuals_server <- function(id,
vectorSelectInput(
inputId = ns("type"),
selected = NULL,
label = shiny::h4("Plot type"),
label = shiny::h4(i18n$t("Plot type")),
choices = Reduce(c, plots_named),
multiple = FALSE
)
@ -291,12 +291,12 @@ data_visuals_server <- function(id,
inputId = ns("secondary"),
data = data,
selected = cols[1],
placeholder = "Please select",
label = if (isTRUE(rv$plot.params()[["secondary.multi"]])) "Additional variables" else "Secondary variable",
placeholder = i18n$t("Please select"),
label = if (isTRUE(rv$plot.params()[["secondary.multi"]])) i18n$t("Additional variables") else i18n$t("Secondary variable"),
multiple = rv$plot.params()[["secondary.multi"]],
maxItems = rv$plot.params()[["secondary.max"]],
col_subset = cols,
none_label = "No variable"
none_label = i18n$t("No variable")
)
})
@ -305,8 +305,8 @@ data_visuals_server <- function(id,
columnSelectInput(
inputId = ns("tertiary"),
data = data,
placeholder = "Please select",
label = "Grouping variable",
placeholder = i18n$t("Please select"),
label = i18n$t("Grouping variable"),
multiple = FALSE,
col_subset = c(
"none",
@ -319,7 +319,7 @@ data_visuals_server <- function(id,
input$secondary
)
),
none_label = "No stratification"
none_label = i18n$t("No stratification")
)
})
@ -335,7 +335,7 @@ data_visuals_server <- function(id,
ter = input$tertiary
)
shiny::withProgress(message = "Drawing the plot. Hold tight for a moment..", {
shiny::withProgress(message = i18n$t("Drawing the plot. Hold tight for a moment.."), {
rv$plot <- rlang::exec(
create_plot,
!!!append_list(
@ -362,7 +362,7 @@ data_visuals_server <- function(id,
output$code_plot <- shiny::renderUI({
shiny::req(rv$code)
prismCodeBlock(paste0("#Plotting\n", rv$code))
prismCodeBlock(paste0(i18n$t("#Plotting\n"), rv$code))
})
shiny::observeEvent(
@ -407,7 +407,7 @@ data_visuals_server <- function(id,
plot <- rv$plot[[1]]
}
# browser()
shiny::withProgress(message = "Drawing the plot. Hold on for a moment..", {
shiny::withProgress(message = i18n$t("Drawing the plot. Hold on for a moment.."), {
ggplot2::ggsave(
filename = file,
plot = plot,
@ -486,8 +486,8 @@ supported_plots <- function() {
list(
plot_hbars = list(
fun = "plot_hbars",
descr = "Stacked horizontal bars",
note = "A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars",
descr = i18n$t("Stacked horizontal bars"),
note = i18n$t("A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars"),
primary.type = c("dichotomous", "categorical"),
secondary.type = c("dichotomous", "categorical"),
secondary.multi = FALSE,
@ -496,8 +496,8 @@ supported_plots <- function() {
),
plot_violin = list(
fun = "plot_violin",
descr = "Violin plot",
note = "A modern alternative to the classic boxplot to visualise data distribution",
descr = i18n$t("Violin plot"),
note = i18n$t("A modern alternative to the classic boxplot to visualise data distribution"),
primary.type = c("datatime", "continuous", "dichotomous", "categorical"),
secondary.type = c("dichotomous", "categorical"),
secondary.multi = FALSE,
@ -514,8 +514,8 @@ supported_plots <- function() {
# ),
plot_sankey = list(
fun = "plot_sankey",
descr = "Sankey plot",
note = "A way of visualising change between groups",
descr = i18n$t("Sankey plot"),
note = i18n$t("A way of visualising change between groups"),
primary.type = c("dichotomous", "categorical"),
secondary.type = c("dichotomous", "categorical"),
secondary.multi = FALSE,
@ -524,8 +524,8 @@ supported_plots <- function() {
),
plot_scatter = list(
fun = "plot_scatter",
descr = "Scatter plot",
note = "A classic way of showing the association between to variables",
descr = i18n$t("Scatter plot"),
note = i18n$t("A classic way of showing the association between to variables"),
primary.type = c("datatime", "continuous"),
secondary.type = c("datatime", "continuous", "categorical"),
secondary.multi = FALSE,
@ -534,8 +534,8 @@ supported_plots <- function() {
),
plot_box = list(
fun = "plot_box",
descr = "Box plot",
note = "A classic way to plot data distribution by groups",
descr = i18n$t("Box plot"),
note = i18n$t("A classic way to plot data distribution by groups"),
primary.type = c("datatime", "continuous", "dichotomous", "categorical"),
secondary.type = c("dichotomous", "categorical"),
secondary.multi = FALSE,
@ -544,8 +544,8 @@ supported_plots <- function() {
),
plot_euler = list(
fun = "plot_euler",
descr = "Euler diagram",
note = "Generate area-proportional Euler diagrams to display set relationships",
descr = i18n$t("Euler diagram"),
note = i18n$t("Generate area-proportional Euler diagrams to display set relationships"),
primary.type = c("dichotomous", "categorical"),
secondary.type = c("dichotomous", "categorical"),
secondary.multi = TRUE,
@ -738,7 +738,10 @@ line_break <- function(data, lineLength = 20, force = FALSE) {
#' @param data list of ggplot2 objects
#' @param tag_levels passed to patchwork::plot_annotation if given. Default is NULL
#' @param title panel title
#' @param ... ignored for argument overflow
#' @param guides passed to patchwork::wrap_plots()
#' @param axes passed to patchwork::wrap_plots()
#' @param axis_titles passed to patchwork::wrap_plots()
#' @param ... passed to patchwork::wrap_plots()
#'
#' @returns list of ggplot2 objects
#' @export
@ -747,6 +750,9 @@ wrap_plot_list <- function(data,
tag_levels = NULL,
title = NULL,
axis.font.family = NULL,
guides = "collect",
axes = "collect",
axis_titles = "collect",
...) {
if (ggplot2::is_ggplot(data[[1]])) {
if (length(data) > 1) {
@ -762,9 +768,10 @@ wrap_plot_list <- function(data,
})() |>
align_axes() |>
patchwork::wrap_plots(
guides = "collect",
axes = "collect",
axis_titles = "collect"
guides = guides,
axes = axes,
axis_titles = axis_titles,
...
)
if (!is.null(tag_levels)) {
out <- out + patchwork::plot_annotation(tag_levels = tag_levels)
@ -783,13 +790,17 @@ wrap_plot_list <- function(data,
cli::cli_abort("Can only wrap lists of {.cls ggplot} objects")
}
if (inherits(x = out, what = "patchwork")) {
out &
ggplot2::theme(axis.text = ggplot2::element_text(family = axis.font.family))
} else {
out +
ggplot2::theme(axis.text = ggplot2::element_text(family = axis.font.family))
if (!is.null(axis.font.family)) {
if (inherits(x = out, what = "patchwork")) {
out <- out &
ggplot2::theme(axis.text = ggplot2::element_text(family = axis.font.family))
} else {
out <- out +
ggplot2::theme(axis.text = ggplot2::element_text(family = axis.font.family))
}
}
out
}
@ -800,7 +811,7 @@ wrap_plot_list <- function(data,
#' @returns list of ggplot2 objects
#' @export
#'
align_axes <- function(...) {
align_axes <- function(..., x.axis = TRUE, y.axis = TRUE) {
# https://stackoverflow.com/questions/62818776/get-axis-limits-from-ggplot-object
# https://github.com/thomasp85/patchwork/blob/main/R/plot_multipage.R#L150
if (ggplot2::is_ggplot(..1)) {
@ -818,7 +829,16 @@ align_axes <- function(...) {
xr <- clean_common_axis(p, "x")
suppressWarnings({
p |> purrr::map(~ .x + ggplot2::xlim(xr) + ggplot2::ylim(yr))
purrr::map(p, \(.x){
out <- .x
if (isTRUE(x.axis)) {
out <- out + ggplot2::xlim(xr)
}
if (isTRUE(y.axis)) {
out <- out + ggplot2::ylim(yr)
}
out
})
})
}

View file

@ -129,14 +129,14 @@ describe_col_char <- function(x, with_summary = TRUE) {
tagList(
tags$hr(style = htmltools::css(margin = "3px 0")),
tags$div(
datamods:::i18n("Unique:"), length(unique(x))
i18n$t("Unique:"), length(unique(x))
),
tags$div(
datamods:::i18n("Missing:"), sum(is.na(x))
i18n$t("Missing:"), sum(is.na(x))
),
tags$div(
style = htmltools::css(whiteSpace = "normal", wordBreak = "break-all"),
datamods:::i18n("Most Common:"), gsub(
i18n$t("Most Common:"), gsub(
pattern = "'",
replacement = "\u07F4",
x = names(sort(table(x), decreasing = TRUE))[1]
@ -178,7 +178,7 @@ describe_col_factor <- function(x, with_summary = TRUE) {
names(two), ":", fmt_p(two, total)
),
tags$div(
"Missing", ":", fmt_p(missing, total)
i18n$t("Missing:"), fmt_p(missing, total)
),
tags$div(
"\u00A0"
@ -201,16 +201,16 @@ describe_col_num <- function(x, with_summary = TRUE) {
tagList(
tags$hr(style = htmltools::css(margin = "3px 0")),
tags$div(
datamods:::i18n("Min:"), round(min(x, na.rm = TRUE), 2)
i18n$t("Min:"), round(min(x, na.rm = TRUE), 2)
),
tags$div(
datamods:::i18n("Mean:"), round(mean(x, na.rm = TRUE), 2)
i18n$t("Mean:"), round(mean(x, na.rm = TRUE), 2)
),
tags$div(
datamods:::i18n("Max:"), round(max(x, na.rm = TRUE), 2)
i18n$t("Max:"), round(max(x, na.rm = TRUE), 2)
),
tags$div(
datamods:::i18n("Missing:"), sum(is.na(x))
i18n$t("Missing:"), sum(is.na(x))
)
)
}
@ -231,13 +231,13 @@ describe_col_date <- function(x, with_summary = TRUE) {
tagList(
tags$hr(style = htmltools::css(margin = "3px 0")),
tags$div(
datamods:::i18n("Min:"), min(x, na.rm = TRUE)
i18n$t("Min:"), min(x, na.rm = TRUE)
),
tags$div(
datamods:::i18n("Max:"), max(x, na.rm = TRUE)
i18n$t("Max:"), max(x, na.rm = TRUE)
),
tags$div(
datamods:::i18n("Missing:"), sum(is.na(x))
i18n$t("Missing:"), sum(is.na(x))
),
tags$div(
"\u00A0"
@ -260,13 +260,13 @@ describe_col_datetime <- function(x, with_summary = TRUE) {
tagList(
tags$hr(style = htmltools::css(margin = "3px 0")),
tags$div(
datamods:::i18n("Min:"), min(x, na.rm = TRUE)
i18n$t("Min:"), min(x, na.rm = TRUE)
),
tags$div(
datamods:::i18n("Max:"), max(x, na.rm = TRUE)
i18n$t("Max:"), max(x, na.rm = TRUE)
),
tags$div(
datamods:::i18n("Missing:"), sum(is.na(x))
i18n$t("Missing:"), sum(is.na(x))
),
tags$div(
"\u00A0"
@ -290,10 +290,10 @@ describe_col_other <- function(x, with_summary = TRUE) {
tagList(
tags$hr(style = htmltools::css(margin = "3px 0")),
tags$div(
datamods:::i18n("Unique:"), length(unique(x))
i18n$t("Unique:"), length(unique(x))
),
tags$div(
datamods:::i18n("Missing:"), sum(is.na(x))
i18n$t("Missing:"), sum(is.na(x))
),
tags$div(
"\u00A0"

View file

@ -153,7 +153,8 @@ dummy_Imports <- function() {
cardx::all_of(),
parameters::ci(),
DT::addRow(),
bslib::accordion()
bslib::accordion(),
NHANES::NHANES()
)
# https://github.com/hadley/r-pkgs/issues/828
}
@ -360,16 +361,17 @@ data_description <- function(data, data_text = "Data") {
n <- nrow(data)
n_var <- ncol(data)
n_complete <- sum(complete.cases(data))
p_complete <- n_complete / n
p_complete <- signif(100 * n_complete / n, 3)
sprintf(
"%s has %s observations and %s variables, with %s (%s%%) complete cases.",
data_text,
n,
n_var,
n_complete,
signif(100 * p_complete, 3)
)
glue::glue(i18n$t("{data_text} has {n} observations and {n_var} variables, with {n_complete} ({p_complete} %) complete cases."))
# sprintf(
# "%s has %s observations and %s variables, with %s (%s%%) complete cases.",
# data_text,
# n,
# n_var,
# n_complete,
# p_complete
# )
}

View file

@ -1 +1 @@
hosted_version <- function()'v25.7.1-250703'
hosted_version <- function()'v25.8.3-250911'

View file

@ -24,7 +24,7 @@ import_file_ui <- function(id,
if (isTRUE(title)) {
title <- shiny::tags$h4(
datamods:::i18n("Import a file"),
"Import a file",
class = "datamods-title"
)
}
@ -35,7 +35,7 @@ import_file_ui <- function(id,
width = 6,
shinyWidgets::numericInputIcon(
inputId = ns("skip_rows"),
label = datamods:::i18n("Rows to skip before reading data:"),
label = i18n$t("Rows to skip before reading data:"),
value = 0,
min = 0,
icon = list("n ="),
@ -45,20 +45,20 @@ import_file_ui <- function(id,
shiny::tagAppendChild(
shinyWidgets::textInputIcon(
inputId = ns("na_label"),
label = datamods:::i18n("Missing values character(s):"),
label = i18n$t("Missing values character(s):"),
value = "NA,,'',na",
icon = list("NA"),
size = "sm",
width = "100%"
),
shiny::helpText(phosphoricons::ph("info"), datamods:::i18n("if several use a comma (',') to separate them"))
shiny::helpText(phosphoricons::ph("info"), i18n$t("if several use a comma (',') to separate them"))
)
),
shiny::column(
width = 6,
shinyWidgets::textInputIcon(
inputId = ns("dec"),
label = datamods:::i18n("Decimal separator:"),
label = i18n$t("Decimal separator:"),
value = ".",
icon = list("0.00"),
size = "sm",
@ -66,7 +66,7 @@ import_file_ui <- function(id,
),
selectInputIcon(
inputId = ns("encoding"),
label = datamods:::i18n("Encoding:"),
label = i18n$t("Encoding:"),
choices = c(
"UTF-8" = "UTF-8",
"Latin1" = "latin1"
@ -81,9 +81,9 @@ import_file_ui <- function(id,
file_ui <- shiny::tagAppendAttributes(
shiny::fileInput(
inputId = ns("file"),
label = datamods:::i18n("Upload a file:"),
buttonLabel = datamods:::i18n("Browse..."),
placeholder = datamods:::i18n("No file selected; maximum file size is 5 mb"),
label = i18n$t("Upload a file:"),
buttonLabel = i18n$t("Browse..."),
placeholder = "No file selected; maximum file size is 5 mb",
accept = file_extensions,
width = "100%",
## A solution to allow multiple file upload is being considered
@ -130,7 +130,7 @@ import_file_ui <- function(id,
id = ns("sheet-container"),
shinyWidgets::pickerInput(
inputId = ns("sheet"),
label = datamods:::i18n("Select sheet to import:"),
label = i18n$t("Select sheet to import:"),
choices = NULL,
width = "100%",
multiple = TRUE
@ -141,8 +141,11 @@ import_file_ui <- function(id,
shinyWidgets::alert(
id = ns("import-result"),
status = "info",
shiny::tags$b(datamods:::i18n("No file selected:")),
sprintf(datamods:::i18n("You can import %s files"), paste(file_extensions, collapse = ", ")),
shiny::tags$b(i18n$t("No file selected.")),
# shiny::textOutput(ns("trans_format_text")),
# This is the easiest solution, though not gramatically perfect
i18n$t("You can choose between these file types:"), paste(file_extensions,collapse=', '),
# sprintf("You can import %s files", paste(file_extensions, collapse = ", ")),
dismissible = TRUE
)
),
@ -206,6 +209,11 @@ import_file_server <- function(id,
}
})
# ## Translations
# shiny::observe({
# output$trans_format_text <- shiny::renderText(glue::glue(i18n$t("You can import {file_extensions_text} files")))
# })
shiny::observeEvent(input$file, {
## Several steps are taken to ensure no errors on changed input file
temporary_rv$sheets <- 1
@ -270,7 +278,7 @@ import_file_server <- function(id,
if (inherits(imported, "try-error") || NROW(imported) < 1) {
datamods:::toggle_widget(inputId = "confirm", enable = FALSE)
datamods:::insert_error(mssg = datamods:::i18n(attr(imported, "condition")$message))
datamods:::insert_error(mssg = i18n$t(attr(imported, "condition")$message))
temporary_rv$status <- "error"
temporary_rv$data <- NULL
temporary_rv$name <- NULL
@ -285,7 +293,7 @@ import_file_server <- function(id,
imported,
trigger_return = trigger_return,
btn_show_data = btn_show_data,
extra = if (isTRUE(input$preview_data)) datamods:::i18n("First five rows are shown below:")
extra = if (isTRUE(input$preview_data)) i18n$t("First five rows are shown below:")
)
)
temporary_rv$status <- "success"
@ -300,7 +308,7 @@ import_file_server <- function(id,
observeEvent(input$see_data, {
tryCatch(
{
datamods:::show_data(default_parsing(temporary_rv$data), title = datamods:::i18n("Imported data"), type = show_data_in)
datamods:::show_data(default_parsing(temporary_rv$data), title = i18n$t("Imported data"), type = show_data_in)
},
# warning = function(warn) {
# showNotification(warn, type = "warning")

View file

@ -76,6 +76,7 @@ ggeulerr <- function(
#' D = sample(c(TRUE, FALSE, FALSE, FALSE), 50, TRUE)
#' ) |> plot_euler("A", c("B", "C"), "D", seed = 4)
#' mtcars |> plot_euler("vs", "am", seed = 1)
#' mtcars |> plot_euler("vs", "am", "cyl", seed = 1)
plot_euler <- function(data, pri, sec, ter = NULL, seed = 2103) {
set.seed(seed = seed)
if (!is.null(ter)) {
@ -90,10 +91,9 @@ plot_euler <- function(data, pri, sec, ter = NULL, seed = 2103) {
na.omit() |>
plot_euler_single()
})
# names(out)
# browser()
wrap_plot_list(out,title=glue::glue("Grouped by {get_label(data,ter)}"))
# patchwork::wrap_plots(out, guides = "collect")
# patchwork::wrap_plots(out)
}
#' Easily plot single euler diagrams
@ -123,8 +123,8 @@ plot_euler_single <- function(data) {
legend.position = "none",
# panel.grid.major = element_blank(),
# panel.grid.minor = element_blank(),
# axis.text.y = element_blank(),
# axis.title.y = element_blank(),
axis.text.y = ggplot2::element_blank(),
axis.title.y = ggplot2::element_blank(),
text = ggplot2::element_text(size = 20),
axis.text = ggplot2::element_blank(),
# plot.title = element_blank(),

View file

@ -7,6 +7,7 @@
#'
#' @examples
#' mtcars |> plot_hbars(pri = "carb", sec = "cyl")
#' mtcars |> plot_hbars(pri = "carb", sec = "cyl", ter="am")
#' mtcars |> plot_hbars(pri = "carb", sec = NULL)
plot_hbars <- function(data, pri, sec, ter = NULL) {
out <- vertical_stacked_bars(data = data, score = pri, group = sec, strata = ter)

View file

@ -14,16 +14,19 @@ plot_violin <- function(data, pri, sec, ter = NULL) {
ds <- list(data)
}
out <- lapply(ds, \(.ds){
rempsyc::nice_violin(
data = .ds,
group = sec,
response = pri,
xtitle = get_label(data, var = sec),
ytitle = get_label(data, var = pri)
)
})
# browser()
suppressWarnings({
out <- lapply(ds, \(.ds){
rempsyc::nice_violin(
data = .ds,
group = sec,
response = pri,
xtitle = get_label(data, var = sec),
ytitle = get_label(data, var = pri)
)
})
wrap_plot_list(out,title=glue::glue("Grouped by {get_label(data,ter)}"))
wrap_plot_list(out, title = glue::glue("Grouped by {get_label(data,ter)}"))
})
# patchwork::wrap_plots(out,guides = "collect")
}

Binary file not shown.

8
R/translate.R Normal file
View file

@ -0,0 +1,8 @@
language_choices <- function() {
c(
"🇬🇧 English" = "en",
"🇹🇿 Kiswahili" = "sw",
"🇩🇰 Dansk" = "da"
)
}

618
R/ui_elements.R Normal file
View file

@ -0,0 +1,618 @@
#' FreesearchR UI elements list
#'
#' @param selection specify element to output
#'
#' @returns Shinu UI elements
#' @export
#'
ui_elements <- function(selection) {
out <- list(
##############################################################################
#########
######### Home panel
#########
##############################################################################
"home" = bslib::nav_panel(
title = "FreesearchR",
# title = shiny::div(htmltools::img(src="FreesearchR-logo-white-nobg-h80.png")),
icon = shiny::icon("house"),
shiny::fluidRow(
# "The browser language is",
# textOutput("your_lang"),
# p(i18n$t("Hello")),
# shiny::uiOutput(outputId = "language_select"),
## On building the dev-version for shinyapps.io, the dev_banner() is redefined
## Default just output "NULL"
## This could probably be achieved more legantly, but this works.
dev_banner(),
shiny::column(width = 2),
shiny::column(
width = 8,
shiny::uiOutput(outputId = "language_select"),
htmlOutput("intro_text")
# shiny::includeHTML(i18n$t("www/intro.html"))
# shiny::markdown(readLines(i18n$t("www/intro.md")))
),
shiny::column(width = 2)
)
),
##############################################################################
#########
######### Import panel
#########
##############################################################################
"import" = bslib::nav_panel(
title = i18n$t("Get started"),
icon = shiny::icon("play"),
value = "nav_import",
shiny::fluidRow(
shiny::column(width = 2),
shiny::column(
width = 8,
shiny::h4(i18n$t("Choose your data")),
# shiny::br(),
# shiny::uiOutput(outputId = "source"),
# radioGroupButtons(
# inputId = "source",
# selected = "file",
# choices = c("File" = "file"),
# size = "lg"
# ),
shiny::selectInput(
inputId = "source",
label="",
selected = "file",
choices = "file",
width = "100%"
),
# shiny::tags$script('document.querySelector("#source div").style.width = "100%"'),
## Update this to change depending on run locally or hosted
shiny::helpText(i18n$t("Upload a file, get data directly from REDCap or use local or sample data.")),
shiny::br(),
shiny::br(),
shiny::conditionalPanel(
condition = "input.source=='file'",
import_file_ui(
id = "file_import",
layout_params = "dropdown",
# title = "Choose a datafile to upload",
file_extensions = c(".csv", ".tsv", ".txt", ".xls", ".xlsx", ".rds", ".ods", ".dta")
)
),
shiny::conditionalPanel(
condition = "input.source=='redcap'",
shiny::uiOutput(outputId = "redcap_warning"),
# shinyWidgets::alert(
# id = "redcap-warning",
# status = "warning",
# shiny::tags$h2(i18n$t("Please be mindfull handling sensitive data")),
# shiny::HTML(i18n$t("<p>The <em><strong>FreesearchR</strong></em> app only stores data for analyses, but please only use with sensitive data when running locally. <a href='https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine'>Read more here</a></p>")),
# dismissible = TRUE
# ),
m_redcap_readUI(
id = "redcap_import",
title = ""
)
),
shiny::conditionalPanel(
condition = "input.source=='env'",
import_globalenv_ui(id = "env", title = NULL)
),
# shiny::conditionalPanel(
# condition = "input.source=='redcap'",
# DT::DTOutput(outputId = "redcap_prev")
# ),
shiny::conditionalPanel(
condition = "output.data_loaded == true",
shiny::br(),
shiny::actionButton(
inputId = "modal_initial_view",
label = i18n$t("Quick overview"),
width = "100%",
icon = shiny::icon("binoculars"),
disabled = FALSE
),
shiny::br(),
shiny::br(),
shiny::h5(i18n$t("Select variables for final import")),
shiny::fluidRow(
shiny::column(
width = 6,
shiny::p(i18n$t("Exclude incomplete variables:")),
shiny::br(),
shinyWidgets::noUiSliderInput(
inputId = "complete_cutoff",
label = NULL,
update_on = "end",
min = 0,
max = 100,
step = 5,
value = 30,
format = shinyWidgets::wNumbFormat(decimals = 0),
color = datamods:::get_primary_color()
),
shiny::helpText(i18n$t("At 0, only complete variables are included; at 100, all variables are included.")),
shiny::br()
),
shiny::column(
width = 6,
shiny::p(i18n$t("Manual selection:")),
shiny::br(),
shiny::uiOutput(outputId = "import_var"),
shiny::br()
)
),
shiny::uiOutput(outputId = "data_info_import", inline = TRUE),
shiny::br(),
shiny::br(),
shiny::actionButton(
inputId = "act_start",
label = i18n$t("Let's begin!"),
width = "100%",
icon = shiny::icon("play"),
disabled = TRUE
),
shiny::br(),
shiny::br()
),
shiny::column(width = 2)
),
shiny::br(),
shiny::br()
)
),
##############################################################################
#########
######### Data overview panel
#########
##############################################################################
"prepare" = bslib::nav_menu(
title = i18n$t("Prepare"),
icon = shiny::icon("pen-to-square"),
value = "nav_prepare",
bslib::nav_panel(
title = i18n$t("Overview and filter"),
icon = shiny::icon("eye"),
value = "nav_prepare_overview",
tags$h3(i18n$t("Overview and filtering")),
fluidRow(
shiny::column(
width = 9,
shiny::uiOutput(outputId = "data_info", inline = TRUE),
shiny::tags$p(
i18n$t("Below you find a summary table for quick insigths, and on the right you can visualise data classes, browse data and apply different data filters.")
)
),
shiny::column(
width = 3,
shiny::actionButton(
inputId = "modal_visual_overview",
label = i18n$t("Visual overview"),
width = "100%",
disabled = TRUE
),
shiny::br(),
shiny::br(),
shiny::actionButton(
inputId = "modal_browse",
label = i18n$t("Browse data"),
width = "100%",
disabled = TRUE
),
shiny::br(),
shiny::br()
)
),
fluidRow(
shiny::column(
width = 9,
data_summary_ui(id = "data_summary"),
shiny::br(),
shiny::br(),
shiny::br(),
shiny::br(),
shiny::br()
),
shiny::column(
width = 3,
shiny::tags$h6(i18n$t("Filter data types")),
shiny::uiOutput(
outputId = "column_filter"
),
## This needs to run in server for translation
shiny::helpText("Read more on how ", tags$a(
"data types",
href = "https://agdamsbo.github.io/FreesearchR/articles/data-types.html",
target = "_blank",
rel = "noopener noreferrer"
), " are defined."),
validation_ui("validation_var"),
shiny::br(),
shiny::br(),
shiny::tags$h6(i18n$t("Filter observations")),
shiny::tags$p(i18n$t("Apply filter on observation")),
IDEAFilter::IDEAFilter_ui("data_filter"),
validation_ui("validation_obs"),
shiny::br(),
shiny::br()
)
),
shiny::br(),
shiny::br(),
shiny::br()
),
bslib::nav_panel(
title = i18n$t("Edit and create data"),
icon = shiny::icon("file-pen"),
tags$h3(i18n$t("Subset, rename and convert variables")),
fluidRow(
shiny::column(
width = 9,
shiny::tags$p(
i18n$t("Below, are several options for simple data manipulation like update variables by renaming, creating new labels (for nicer tables in the report) and changing variable classes (numeric, factor/categorical etc.)."),
i18n$t("There are more advanced options to modify factor/categorical variables as well as create new factor from a continous variable or new variables with R code. At the bottom you can restore the original data."),
i18n$t("Please note that data modifications are applied before any filtering.")
)
)
),
update_variables_ui("modal_variables"),
shiny::tags$br(),
shiny::tags$br(),
shiny::tags$h4(i18n$t("Advanced data manipulation")),
shiny::tags$p(i18n$t("Below options allow more advanced varaible manipulations.")),
shiny::tags$br(),
shiny::tags$br(),
shiny::fluidRow(
shiny::column(
width = 4,
shiny::actionButton(
inputId = "modal_update",
label = i18n$t("Reorder factor levels"),
width = "100%"
),
shiny::tags$br(),
shiny::helpText(i18n$t("Reorder the levels of factor/categorical variables.")),
shiny::tags$br(),
shiny::tags$br()
),
shiny::column(
width = 4,
shiny::actionButton(
inputId = "modal_cut",
label = i18n$t("New factor"),
width = "100%"
),
shiny::tags$br(),
shiny::helpText(i18n$t("Create factor/categorical variable from a continous variable (number/date/time).")),
shiny::tags$br(),
shiny::tags$br()
),
shiny::column(
width = 4,
shiny::actionButton(
inputId = "modal_column",
label = i18n$t("New variable"),
width = "100%"
),
shiny::tags$br(),
shiny::helpText(i18n$t("Create a new variable based on an R-expression.")),
shiny::tags$br(),
shiny::tags$br()
)
),
tags$h4(i18n$t("Compare modified data to original")),
shiny::tags$br(),
shiny::tags$p(
i18n$t("Raw print of the original vs the modified data.")
),
shiny::tags$br(),
shiny::fluidRow(
shiny::column(
width = 6,
shiny::tags$b(i18n$t("Original data:")),
shiny::verbatimTextOutput("original_str")
),
shiny::column(
width = 6,
shiny::tags$b(i18n$t("Modified data:")),
shiny::verbatimTextOutput("modified_str")
)
),
shiny::tags$br(),
shiny::actionButton(
inputId = "data_reset",
label = "Restore original data",
width = "100%"
),
shiny::tags$br(),
shiny::helpText("Reset to original imported dataset. Careful! There is no un-doing."),
shiny::tags$br()
)
# )
),
##############################################################################
#########
######### Descriptive analyses panel
#########
##############################################################################
"describe" =
bslib::nav_menu(
title = i18n$t("Evaluate"),
icon = shiny::icon("magnifying-glass-chart"),
value = "nav_describe",
# id = "navdescribe",
# bslib::navset_bar(
# title = "",
bslib::nav_panel(
title = "Characteristics",
icon = bsicons::bs_icon("table"),
bslib::layout_sidebar(
sidebar = bslib::sidebar(
shiny::uiOutput(outputId = "data_info_nochar", inline = TRUE),
bslib::accordion(
open = "acc_chars",
multiple = FALSE,
bslib::accordion_panel(
open = TRUE,
value = "acc_chars",
title = "Settings",
icon = bsicons::bs_icon("table"),
shiny::uiOutput("strat_var"),
shiny::helpText("Only factor/categorical variables are available for stratification. Go back to the 'Prepare' tab to reclass a variable if it's not on the list."),
shiny::conditionalPanel(
condition = "input.strat_var!='none'",
shiny::radioButtons(
inputId = "add_p",
label = "Compare strata?",
selected = "no",
inline = TRUE,
choices = list(
"No" = "no",
"Yes" = "yes"
)
),
shiny::helpText("Option to perform statistical comparisons between strata in baseline table.")
),
shiny::br(),
shiny::br(),
shiny::actionButton(
inputId = "act_eval",
label = "Evaluate",
width = "100%",
icon = shiny::icon("calculator"),
disabled = TRUE
)
)
)
),
gt::gt_output(outputId = "table1")
)
),
bslib::nav_panel(
title = "Correlations",
icon = bsicons::bs_icon("bounding-box"),
bslib::layout_sidebar(
sidebar = bslib::sidebar(
# shiny::uiOutput(outputId = "data_info_nochar", inline = TRUE),
bslib::accordion(
open = "acc_chars",
multiple = FALSE,
bslib::accordion_panel(
value = "acc_cor",
title = "Correlations",
icon = bsicons::bs_icon("bounding-box"),
shiny::uiOutput("outcome_var_cor"),
shiny::helpText("To avoid evaluating the correlation of the outcome variable, this can be excluded from the plot or select 'none'."),
shiny::br(),
shinyWidgets::noUiSliderInput(
inputId = "cor_cutoff",
label = "Correlation cut-off",
min = 0,
max = 1,
step = .01,
value = .8,
format = shinyWidgets::wNumbFormat(decimals = 2),
color = datamods:::get_primary_color()
),
shiny::helpText("Set the cut-off for considered 'highly correlated'.")
)
)
),
data_correlations_ui(id = "correlations", height = 600)
)
),
bslib::nav_panel(
title = "Missings",
icon = bsicons::bs_icon("x-circle"),
bslib::layout_sidebar(
sidebar = bslib::sidebar(
bslib::accordion(
open = "acc_chars",
multiple = FALSE,
bslib::accordion_panel(
vlaue = "acc_mis",
title = "Missings",
icon = bsicons::bs_icon("x-circle"),
shiny::uiOutput("missings_var"),
shiny::helpText("To consider if data is missing by random, choose the outcome/dependent variable, if it has any missings to evaluate if there is a significant difference across other variables depending on missing data or not.")
)
)
),
data_missings_ui(id = "missingness")
)
)
),
##############################################################################
#########
######### Visuals panel
#########
##############################################################################
"visuals" = do.call(
bslib::nav_panel,
c(
list(
title = i18n$t("Visuals"),
icon = shiny::icon("chart-line"),
value = "nav_visuals"
),
data_visuals_ui("visuals")
)
# do.call(
# bslib::navset_bar,
# data_visuals_ui("visuals")#,
# c(
# )
# )
),
##############################################################################
#########
######### Regression analyses panel
#########
##############################################################################
"analyze" =
bslib::nav_panel(
title = i18n$t("Regression"),
icon = shiny::icon("calculator"),
value = "nav_analyses",
do.call(
bslib::navset_card_tab,
regression_ui("regression")
)
),
##############################################################################
#########
######### Download panel
#########
##############################################################################
"download" =
bslib::nav_panel(
title = i18n$t("Download"),
icon = shiny::icon("download"),
value = "nav_download",
shiny::fluidRow(
shiny::column(width = 2),
shiny::column(
width = 8,
shiny::h4(i18n$t("Analysis validation")),
validation_ui("validation_all"),
shiny::fluidRow(
shiny::column(
width = 6,
shiny::h4(i18n$t("Report")),
shiny::helpText(i18n$t("Choose your favourite output file format for further work, and download, when the analyses are done.")),
shiny::br(),
shiny::br(),
shiny::selectInput(
inputId = "output_type",
label = "Output format",
selected = NULL,
choices = list(
"MS Word" = "docx",
"LibreOffice" = "odt"
# ,
# "PDF" = "pdf",
# "All the above" = "all"
)
),
shiny::br(),
# Button
shiny::downloadButton(
outputId = "report",
label = "Download report",
icon = shiny::icon("download")
)
# shiny::helpText("If choosing to output to MS Word, please note, that when opening the document, two errors will pop-up. Choose to repair and choose not to update references. The issue is being worked on. You can always choose LibreOffice instead."),
),
shiny::column(
width = 6,
shiny::h4("Data"),
shiny::helpText("Choose your favourite output data format to download the modified data."),
shiny::br(),
shiny::br(),
shiny::selectInput(
inputId = "data_type",
label = "Data format",
selected = NULL,
choices = list(
"R" = "rds",
"stata" = "dta",
"CSV" = "csv"
)
),
shiny::helpText("No metadata is saved when exporting to csv."),
shiny::br(),
shiny::br(),
# Button
shiny::downloadButton(
outputId = "data_modified",
label = "Download data",
icon = shiny::icon("download")
)
)
),
shiny::br(),
shiny::br(),
shiny::h4("Code snippets"),
shiny::tags$p("Below are the code bits used to create the final data set and the main analyses."),
shiny::tags$p("This can be used as a starting point for learning to code and for reproducibility."),
shiny::tagList(
lapply(
paste0("code_", c(
"import", "format", "data", "variables", "filter", "table1", "univariable", "multivariable"
)),
\(.x)shiny::htmlOutput(outputId = .x)
)
),
shiny::tags$br(),
shiny::br()
),
shiny::column(width = 2)
)
),
##############################################################################
#########
######### Feedback link
#########
##############################################################################
"feedback" = bslib::nav_item(
# shiny::img(shiny::icon("book")),
shiny::tags$a(
href = "https://redcap.au.dk/surveys/?s=JPCLPTXYDKFA8DA8",
"Feedback", shiny::icon("arrow-up-right-from-square"),
target = "_blank",
rel = "noopener noreferrer"
)
),
##############################################################################
#########
######### Documentation link
#########
##############################################################################
"docs" = bslib::nav_item(
# shiny::img(shiny::icon("book")),
shiny::tags$a(
href = "https://agdamsbo.github.io/FreesearchR/",
"Docs", shiny::icon("arrow-up-right-from-square"),
target = "_blank",
rel = "noopener noreferrer"
)
)
# bslib::nav_panel(
# title = "Documentation",
# # shiny::tags$iframe("www/docs.html", height=600, width=535),
# shiny::htmlOutput("docs_file"),
# shiny::br()
# )
)
if (!is.null(selection)) {
out[[selection]]
} else {
out
}
}
# ls <- list("home"=1:4,
# "test"=1:4)
#

View file

@ -33,7 +33,7 @@ update_factor_ui <- function(id) {
width = 6,
shinyWidgets::virtualSelectInput(
inputId = ns("variable"),
label = i18n("Factor variable to reorder:"),
label = i18n$t("Factor variable to reorder:"),
choices = NULL,
width = "100%",
zIndex = 50
@ -46,7 +46,7 @@ update_factor_ui <- function(id) {
inputId = ns("sort_levels"),
label = tagList(
phosphoricons::ph("sort-ascending"),
datamods:::i18n("Sort by levels")
i18n$t("Sort by levels")
),
class = "btn-outline-primary mb-3",
width = "100%"
@ -59,7 +59,7 @@ update_factor_ui <- function(id) {
inputId = ns("sort_occurrences"),
label = tagList(
phosphoricons::ph("sort-ascending"),
datamods:::i18n("Sort by count")
i18n$t("Sort by count")
),
class = "btn-outline-primary mb-3",
width = "100%"
@ -71,7 +71,7 @@ update_factor_ui <- function(id) {
class = "float-end",
shinyWidgets::prettyCheckbox(
inputId = ns("new_var"),
label = datamods:::i18n("Create a new variable (otherwise replaces the one selected)"),
label = i18n$t("Create a new variable (otherwise replaces the one selected)"),
value = FALSE,
status = "primary",
outline = TRUE,
@ -79,7 +79,7 @@ update_factor_ui <- function(id) {
),
actionButton(
inputId = ns("create"),
label = tagList(phosphoricons::ph("arrow-clockwise"), datamods:::i18n("Update factor variable")),
label = tagList(phosphoricons::ph("arrow-clockwise"), i18n$t("Update factor variable")),
class = "btn-outline-primary"
)
),
@ -146,13 +146,13 @@ update_factor_server <- function(id, data_r = reactive(NULL)) {
decreasing <- FALSE
label <- tagList(
phosphoricons::ph("sort-descending"),
datamods:::i18n("Sort count")
i18n$t("Sort count")
)
} else {
decreasing <- TRUE
label <- tagList(
phosphoricons::ph("sort-ascending"),
datamods:::i18n("Sort count")
i18n$t("Sort count")
)
}
updateActionButton(inputId = "sort_occurrences", label = as.character(label))
@ -179,7 +179,7 @@ update_factor_server <- function(id, data_r = reactive(NULL)) {
grid <- grid_columns(
grid,
columns = c("Var1", "Var1_toset", "Freq"),
header = c(datamods:::i18n("Levels"), "New label", datamods:::i18n("Count"))
header = c(i18n$t("Levels"), "New label", i18n$t("Count"))
)
grid <- grid_colorbar(
grid,
@ -241,7 +241,7 @@ update_factor_server <- function(id, data_r = reactive(NULL)) {
#'
#' @rdname update-factor
modal_update_factor <- function(id,
title = i18n("Update levels of a factor"),
title = i18n$t("Update levels of a factor"),
easyClose = TRUE,
size = "l",
footer = NULL) {
@ -267,7 +267,7 @@ modal_update_factor <- function(id,
#' @importFrom htmltools tagList
#' @rdname update-factor
winbox_update_factor <- function(id,
title = i18n("Update levels of a factor"),
title = i18n$t("Update levels of a factor"),
options = shinyWidgets::wbOptions(),
controls = shinyWidgets::wbControls()) {
ns <- NS(id)

View file

@ -13,7 +13,7 @@ update_variables_ui <- function(id, title = "") {
ns <- NS(id)
if (isTRUE(title)) {
title <- htmltools::tags$h4(
i18n("Update & select variables"),
i18n$t("Update & select variables"),
class = "datamods-title"
)
}
@ -35,19 +35,19 @@ update_variables_ui <- function(id, title = "") {
),
shinyWidgets::textInputIcon(
inputId = ns("format"),
label = i18n("Date format:"),
label = i18n$t("Date format:"),
value = "%Y-%m-%d",
icon = list(phosphoricons::ph("clock"))
),
shinyWidgets::textInputIcon(
inputId = ns("origin"),
label = i18n("Date to use as origin to convert date/datetime:"),
label = i18n$t("Date to use as origin to convert date/datetime:"),
value = "1970-01-01",
icon = list(phosphoricons::ph("calendar"))
),
shinyWidgets::textInputIcon(
inputId = ns("dec"),
label = i18n("Decimal separator:"),
label = i18n$t("Decimal separator:"),
value = ".",
icon = list("0.00")
)
@ -75,8 +75,8 @@ update_variables_ui <- function(id, title = "") {
shiny::actionButton(
inputId = ns("validate"),
label = htmltools::tagList(
phosphoricons::ph("arrow-circle-right", title = datamods::i18n("Apply changes")),
datamods::i18n("Apply changes")
phosphoricons::ph("arrow-circle-right", title = i18n$t("Apply changes")),
i18n$t("Apply changes")
),
width = "100%"
)
@ -115,12 +115,11 @@ update_variables_server <- function(id,
output$data_info <- shiny::renderUI({
shiny::req(data_r())
data_description(data_r())
# sprintf(i18n("Data has %s observations and %s variables."), nrow(data), ncol(data))
})
variables_r <- shiny::reactive({
shiny::validate(
shiny::need(data(), i18n("No data to display."))
shiny::need(data(), i18n$t("No data to display."))
)
data <- data_r()
if (isTRUE(return_data_on_init)) {
@ -225,7 +224,7 @@ update_variables_server <- function(id,
datamods:::insert_alert(
selector = ns("update"),
status = "success",
tags$b(phosphoricons::ph("check"), datamods::i18n("Data successfully updated!"))
tags$b(phosphoricons::ph("check"), i18n$t("Data successfully updated!"))
)
updated_data$x <- data
updated_data$list_rename <- list_rename
@ -804,3 +803,4 @@ clean_date <- function(data) {
}) |>
unname()
}
#

390
R/validation.R Normal file
View file

@ -0,0 +1,390 @@
# Description of warning with text description incl metric
# Color coded (green (OK) or yellow (WARNING))
# option to ignore/accept warnings ### to simplify things, this is gone for now ###
# Only show warnings based on performed analyses
## 250825
## Works in demo
## Not alert is printed in app interface
## I believe it comes down to the reactivity
########################################################################
############# Server and UI
########################################################################
#' @title Validation module
#'
#' @description Check that a dataset respect some validation expectations.
#'
#' @param id Module's ID.
#' @param max_height Maximum height for validation results element, useful if you have many rules.
#' @param ... Arguments passed to \code{actionButton} or \code{uiOutput} depending on display mode,
#' you cannot use \code{inputId}/\code{outputId}, \code{label} or \code{icon} (button only).
#'
#' @return
#' * UI: HTML tags that can be included in shiny's UI
#' * Server: a \code{list} with two slots:
#' + **status**: a \code{reactive} function returning the best status available between \code{"OK"}, \code{"Failed"} or \code{"Error"}.
#' + **details**: a \code{reactive} function returning a \code{list} with validation details.
#' @export
#'
#' @rdname validation
#'
#' @example examples/validation_module_demo.R
validation_ui <- function(id, max_height = NULL, ...) {
ns <- shiny::NS(id)
max_height <- if (!is.null(max_height)) {
paste0("overflow-y: auto; max-height:", htmltools::validateCssUnit(max_height), ";")
}
ui <- shiny::uiOutput(
outputId = ns("results"),
...,
style = max_height
)
htmltools::tagList(
ui, datamods:::html_dependency_datamods()
)
}
#' @export
#'
#' @param data a \code{reactive} function returning a \code{data.frame}.
#'
#' @rdname validation
#'
validation_server <- function(id,
data) {
moduleServer(
id = id,
module = function(input, output, session) {
valid_ui <- reactiveValues(x = NULL)
data_r <- if (shiny::is.reactive(data)) data else shiny::reactive(data)
# observeEvent(data_r(), {
# to_validate <- data()
# valid_dims <- check_data(to_validate, n_row = n_row, n_col = n_col)
#
# if (all(c(valid_dims$nrows, valid_dims$ncols))) {
# valid_status <- "OK"
# } else {
# valid_status <- "Failed"
# }
#
# valid_results <- lapply(
# X = c("nrows", "ncols"),
# FUN = function(x) {
# if (is.null(valid_dims[[x]]))
# return(NULL)
# label <- switch(
# x,
# "nrows" = n_row_label,
# "ncols" = n_col_label
# )
# list(
# status = ifelse(valid_dims[[x]], "OK", "Failed"),
# label = paste0("<b>", label, "</b>")
# )
# }
# )
shiny::observeEvent(
data_r(),
{
# browser()
to_validate <- data_r()
if (is.reactivevalues(to_validate))
out <- lapply(
reactiveValuesToList(to_validate),
make_validation_alerts) |>
purrr::list_flatten()
if (length(to_validate) > 0) {
out <- make_validation_alerts(to_validate)
}
valid_ui$x <- tagList(out)
}
)
output$results <- renderUI({
valid_ui$x
})
}
)
}
########################################################################
############# Validation functions
########################################################################
#' Dimensions validation
#'
#' @param before data before
#' @param after data after
#' @param fun dimension function. ncol or nrow
#'
#' @returns data.frame
#'
dim_change_call <- function(before, after, fun) {
# browser()
if (!0 %in% c(dim(before), dim(after))) {
n_before <- fun(before)
n_after <- fun(after)
n_out <- n_before - n_after
p_after <- n_after / fun(before) * 100
p_out <- 100 - p_after
data.frame(
n_before = n_before,
n_after = n_after,
n_out = n_out,
p_after = p_after,
p_out = p_out
) |>
dplyr::mutate(
dplyr::across(
dplyr::where(
is.numeric
),
\(.y) round(.y, 0)
)
)
} else {
data.frame(NULL)
}
}
#' Variable filter test wrapper
#'
#' @param before data before
#' @param after data after
#'
#' @returns vector
#'
#' @examples
#' vars_filter_validate(mtcars, mtcars[1:6])
#' vars_filter_validate(mtcars, mtcars[0])
vars_filter_validate <- function(before, after) {
dim_change_call(before, after, ncol)
}
#' Observations filter test wrapper
#'
#' @param before data before
#' @param after data after
#'
#' @returns vector
#'
obs_filter_validate <- function(before, after) {
dim_change_call(before, after, nrow)
}
#' Validate function of missingness in data
#'
#' @param data data set
#'
#' @returns data.frame
#' @export
#'
#' @examples
#' df <- mtcars
#' df[1,2:4] <- NA
#' missings_validate(df)
missings_validate <- function(data){
if (!0 %in% dim(data)) {
# browser()
p_miss <- sum(is.na(data))/prod(dim(data))*100
data.frame(
p_miss = p_miss
) |>
dplyr::mutate(
dplyr::across(
dplyr::where(
is.numeric
),
\(.y) signif(.y, 2)
)
)
} else {
data.frame(NULL)
}
}
########################################################################
############# Collected validation functions in a library-like function
########################################################################
#' Validation library
#'
#' @param name Index name
#'
#' @returns list
#'
#' @examples
#' validation_lib()
#' validation_lib("missings")
validation_lib <- function(name=NULL) {
ls <- list(
"obs_filter" = function(x, y) {
## Validation function for observations filter
list(
string = i18n$t("You removed {p_out} % of observations."),
summary.fun = obs_filter_validate,
summary.fun.args = list(
before = x,
after = y
),
test.fun = function(x, var, cut) {
test.var <- x[var]
ifelse(test.var > cut, "warning", "succes")
},
test.fun.args = list(var = "p_out", cut = 50)
)
},
"var_filter" = function(x, y) {
## Validation function for variables filter
list(
string = i18n$t("You removed {p_out} % of variables."),
summary.fun = vars_filter_validate,
summary.fun.args = list(
before = x,
after = y
),
test.fun = function(x, var, cut) {
test.var <- x[var]
ifelse(test.var > cut, "warning", "succes")
},
test.fun.args = list(var = "p_out", cut = 50)
)
},
"missings" = function(x, y) {
### Placeholder for missingness validation
list(
string = "There are {p_miss} % missing observations.",
summary.fun = missings_validate,
summary.fun.args = list(
data = x
),
test.fun = function(x, var, cut) {
test.var <- x[var]
ifelse(test.var > cut, "warning", "succes")
},
test.fun.args = list(var = "p_miss", cut = 30)
)
}
)
if (!is.null(name)){
name <- match.arg(name,choices = names(ls))
ls[[name]]
} else {
ls
}
}
########################################################################
############# Validation creation
########################################################################
#' Create validation data.frame
#'
#' @param ls validation list
#' @param ... magic dots
#'
#' @returns data.frame
#' @export
#'
#' @examples
#' i18n <- shiny.i18n::Translator$new(translation_csvs_path = here::here("inst/translations"))
#' i18n$set_translation_language("en")
#' df_original <- mtcars
#' df_original[1,2:4] <- NA
#' df_obs <- df_original |> dplyr::filter(carb==4)
#' df_vars <- df_original[1:7]
#' val <- purrr::map2(
#' .x = validation_lib(),
#' .y = list(
#' list(x = df_original, y = df_obs),
#' list(x = df_original, y = df_vars),
#' list(x=df_original)),
#' make_validation
#' )
#' val |> make_validation_alerts()
#'
#' val2 <- purrr::map2(
#' .x = validation_lib()[2],
#' .y = list(list(x = mtcars, y = mtcars[0])),
#' make_validation
#' )
#' val2 |> make_validation_alerts()
#'
#' val3 <- make_validation(
#' ls = validation_lib()[[2]],
#' list(x = mtcars, y = mtcars[0])
#' )
make_validation <- function(ls, ...) {
ls <- do.call(ls, ...)
df <- do.call(ls$summary.fun, ls$summary.fun.args)
if (!any(dim(df) == c(0))) {
label <- with(df, {
glue::glue(ls$string)
})
# browser()
status <- do.call(ls$test.fun, modifyList(ls$test.fun.args, list(x = df)))
data.frame(
label = label,
status = status[1]
)
} else {
data.frame(NULL)
}
}
#' Create alert from validation data.frame
#'
#' @param data
#'
#' @export
make_validation_alerts <- function(data) {
# browser()
if (is.data.frame(data)){
ls <- list(data)
} else {
ls <- data
}
lapply(
X = ls,
FUN = function(x) {
# browser()
if (!is.null(dim(x)) && !any(dim(x) == c(0))) {
icon <- switch(x$status,
"succes" = phosphoricons::ph("check", title = "OK"),
"warning" = phosphoricons::ph("warning", title = "Warning")
)
shinyWidgets::alert(
icon,
htmltools::HTML(x$label),
status = x$status,
style = "margin-bottom: 10px; padding: 10px;"
)
} else {
return(NULL)
}
}
)
}

View file

@ -4,18 +4,18 @@
|setting |value |
|:-----------|:------------------------------------------|
|version |R version 4.4.1 (2024-06-14) |
|os |macOS 15.3.1 |
|os |macOS 15.6.1 |
|system |aarch64, darwin20 |
|ui |RStudio |
|language |(EN) |
|collate |en_US.UTF-8 |
|ctype |en_US.UTF-8 |
|tz |Europe/Copenhagen |
|date |2025-07-03 |
|date |2025-09-10 |
|rstudio |2025.05.0+496 Mariposa Orchid (desktop) |
|pandoc |3.6.4 @ /opt/homebrew/bin/ (via rmarkdown) |
|quarto |1.7.30 @ /usr/local/bin/quarto |
|FreesearchR |25.7.1.250703 |
|FreesearchR |25.8.3.250910 |
--------------------------------------------------------------------------------
@ -28,21 +28,22 @@
|assertthat |0.2.1 |2019-03-21 |CRAN (R 4.4.1) |
|backports |1.5.0 |2024-05-23 |CRAN (R 4.4.1) |
|base64enc |0.1-3 |2015-07-28 |CRAN (R 4.4.1) |
|bayestestR |0.15.3 |2025-04-28 |CRAN (R 4.4.1) |
|bayestestR |0.16.1 |2025-07-01 |CRAN (R 4.4.1) |
|bit |4.6.0 |2025-03-06 |CRAN (R 4.4.1) |
|bit64 |4.6.0-1 |2025-01-16 |CRAN (R 4.4.1) |
|bitops |1.0-9 |2024-10-03 |CRAN (R 4.4.1) |
|boot |1.3-31 |2024-08-28 |CRAN (R 4.4.1) |
|brio |1.1.5 |2024-04-24 |CRAN (R 4.4.1) |
|broom |1.0.8 |2025-03-28 |CRAN (R 4.4.1) |
|broom |1.0.9 |2025-07-28 |CRAN (R 4.4.1) |
|broom.helpers |1.21.0 |2025-04-24 |CRAN (R 4.4.1) |
|bsicons |0.1.2 |2023-11-04 |CRAN (R 4.4.0) |
|bslib |0.9.0 |2025-01-30 |CRAN (R 4.4.1) |
|cachem |1.1.0 |2024-05-16 |CRAN (R 4.4.1) |
|cards |0.6.0 |2025-04-11 |CRAN (R 4.4.1) |
|cardx |0.2.4 |2025-04-12 |CRAN (R 4.4.1) |
|cards |0.6.1 |2025-07-03 |CRAN (R 4.4.1) |
|cardx |0.2.5 |2025-07-03 |CRAN (R 4.4.1) |
|caTools |1.18.3 |2024-09-04 |CRAN (R 4.4.1) |
|cellranger |1.1.0 |2016-07-27 |CRAN (R 4.4.0) |
|cffr |1.2.0 |2025-01-25 |CRAN (R 4.4.1) |
|checkmate |2.3.2 |2024-07-29 |CRAN (R 4.4.0) |
|class |7.3-23 |2025-01-01 |CRAN (R 4.4.1) |
|classInt |0.4-11 |2025-01-08 |CRAN (R 4.4.1) |
@ -50,13 +51,13 @@
|cluster |2.1.8.1 |2025-03-12 |CRAN (R 4.4.1) |
|codetools |0.2-20 |2024-03-31 |CRAN (R 4.4.1) |
|colorspace |2.1-1 |2024-07-26 |CRAN (R 4.4.1) |
|commonmark |1.9.5 |2025-03-17 |CRAN (R 4.4.1) |
|commonmark |2.0.0 |2025-07-07 |CRAN (R 4.4.1) |
|crayon |1.5.3 |2024-06-20 |CRAN (R 4.4.1) |
|crosstalk |1.2.1 |2023-11-23 |CRAN (R 4.4.0) |
|data.table |1.17.0 |2025-02-22 |CRAN (R 4.4.1) |
|curl |6.4.0 |2025-06-22 |CRAN (R 4.4.1) |
|data.table |1.17.8 |2025-07-10 |CRAN (R 4.4.1) |
|datamods |1.5.3 |2024-10-02 |CRAN (R 4.4.1) |
|datawizard |1.0.2 |2025-03-24 |CRAN (R 4.4.1) |
|DEoptimR |1.1-3-1 |2024-11-23 |CRAN (R 4.4.1) |
|datawizard |1.2.0 |2025-07-17 |CRAN (R 4.4.1) |
|DEoptimR |1.1-4 |2025-07-27 |CRAN (R 4.4.1) |
|desc |1.4.3 |2023-12-10 |CRAN (R 4.4.1) |
|devtools |2.4.5 |2022-10-11 |CRAN (R 4.4.0) |
|DHARMa |0.4.7 |2024-10-18 |CRAN (R 4.4.1) |
@ -65,17 +66,16 @@
|dplyr |1.1.4 |2023-11-17 |CRAN (R 4.4.0) |
|DT |0.33 |2024-04-04 |CRAN (R 4.4.0) |
|e1071 |1.7-16 |2024-09-16 |CRAN (R 4.4.1) |
|easystats |0.7.4 |2025-02-06 |CRAN (R 4.4.1) |
|effectsize |1.0.0 |2024-12-10 |CRAN (R 4.4.1) |
|easystats |0.7.5 |2025-07-11 |CRAN (R 4.4.1) |
|ellipsis |0.3.2 |2021-04-29 |CRAN (R 4.4.1) |
|emmeans |1.11.1 |2025-05-04 |CRAN (R 4.4.1) |
|emmeans |1.11.2 |2025-07-11 |CRAN (R 4.4.1) |
|esquisse |2.1.0 |2025-02-21 |CRAN (R 4.4.1) |
|estimability |1.5.1 |2024-05-12 |CRAN (R 4.4.0) |
|estimability |1.5.1 |2024-05-12 |CRAN (R 4.4.1) |
|eulerr |7.0.2 |2024-03-28 |CRAN (R 4.4.0) |
|evaluate |1.0.3 |2025-01-10 |CRAN (R 4.4.1) |
|evaluate |1.0.4 |2025-06-18 |CRAN (R 4.4.1) |
|farver |2.1.2 |2024-05-13 |CRAN (R 4.4.1) |
|fastmap |1.2.0 |2024-05-15 |CRAN (R 4.4.1) |
|flextable |0.9.7 |2024-10-27 |CRAN (R 4.4.1) |
|flextable |0.9.9 |2025-05-31 |CRAN (R 4.4.1) |
|fontawesome |0.5.3 |2024-11-16 |CRAN (R 4.4.1) |
|fontBitstreamVera |0.1.1 |2017-02-01 |CRAN (R 4.4.1) |
|fontLiberation |0.1.0 |2016-10-15 |CRAN (R 4.4.1) |
@ -84,22 +84,22 @@
|foreach |1.5.2 |2022-02-02 |CRAN (R 4.4.0) |
|foreign |0.8-90 |2025-03-31 |CRAN (R 4.4.1) |
|Formula |1.2-5 |2023-02-24 |CRAN (R 4.4.1) |
|FreesearchR |25.7.1 |NA |NA |
|FreesearchR |25.8.3 |NA |NA |
|fs |1.6.6 |2025-04-12 |CRAN (R 4.4.1) |
|gdtools |0.4.2 |2025-03-27 |CRAN (R 4.4.1) |
|generics |0.1.3 |2022-07-05 |CRAN (R 4.4.1) |
|generics |0.1.4 |2025-05-09 |CRAN (R 4.4.1) |
|ggalluvial |0.12.5 |2023-02-22 |CRAN (R 4.4.0) |
|ggcorrplot |0.1.4.1 |2023-09-05 |CRAN (R 4.4.0) |
|ggforce |0.4.2 |2024-02-19 |CRAN (R 4.4.0) |
|ggforce |0.5.0 |2025-06-18 |CRAN (R 4.4.1) |
|ggplot2 |3.5.2 |2025-04-09 |CRAN (R 4.4.1) |
|ggridges |0.5.6 |2024-01-23 |CRAN (R 4.4.0) |
|ggstats |0.9.0 |2025-03-10 |CRAN (R 4.4.1) |
|ggstats |0.10.0 |2025-07-02 |CRAN (R 4.4.1) |
|glue |1.8.0 |2024-09-30 |CRAN (R 4.4.1) |
|gridExtra |2.3 |2017-09-09 |CRAN (R 4.4.1) |
|gt |1.0.0 |2025-04-05 |CRAN (R 4.4.1) |
|gtable |0.3.6 |2024-10-25 |CRAN (R 4.4.1) |
|gtsummary |2.2.0 |2025-04-14 |CRAN (R 4.4.1) |
|haven |2.5.4 |2023-11-30 |CRAN (R 4.4.0) |
|gtsummary |2.3.0 |2025-07-03 |CRAN (R 4.4.1) |
|haven |2.5.5 |2025-05-30 |CRAN (R 4.4.1) |
|here |1.0.1 |2020-12-13 |CRAN (R 4.4.1) |
|Hmisc |5.2-3 |2025-03-16 |CRAN (R 4.4.1) |
|hms |1.1.3 |2023-03-21 |CRAN (R 4.4.0) |
@ -107,46 +107,43 @@
|htmltools |0.5.8.1 |2024-04-04 |CRAN (R 4.4.1) |
|htmlwidgets |1.6.4 |2023-12-06 |CRAN (R 4.4.0) |
|httpuv |1.6.16 |2025-04-16 |CRAN (R 4.4.1) |
|IDEAFilter |0.2.0 |2024-04-15 |CRAN (R 4.4.0) |
|insight |1.2.0 |2025-04-22 |CRAN (R 4.4.1) |
|IDEAFilter |0.2.1 |2025-07-29 |CRAN (R 4.4.1) |
|insight |1.4.0 |2025-08-18 |CRAN (R 4.4.1) |
|iterators |1.0.14 |2022-02-05 |CRAN (R 4.4.1) |
|jquerylib |0.1.4 |2021-04-26 |CRAN (R 4.4.0) |
|jsonlite |2.0.0 |2025-03-27 |CRAN (R 4.4.1) |
|jsonvalidate |1.5.0 |2025-02-07 |CRAN (R 4.4.1) |
|KernSmooth |2.23-26 |2025-01-01 |CRAN (R 4.4.1) |
|keyring |1.3.2 |2023-12-11 |CRAN (R 4.4.0) |
|keyring |1.4.1 |2025-06-15 |CRAN (R 4.4.1) |
|knitr |1.50 |2025-03-16 |CRAN (R 4.4.1) |
|labeling |0.4.3 |2023-08-29 |CRAN (R 4.4.1) |
|labelled |2.14.0 |2025-01-08 |CRAN (R 4.4.1) |
|later |1.4.2 |2025-04-08 |CRAN (R 4.4.1) |
|lattice |0.22-7 |2025-04-02 |CRAN (R 4.4.1) |
|lifecycle |1.0.4 |2023-11-07 |CRAN (R 4.4.1) |
|litedown |0.7 |2025-04-08 |CRAN (R 4.4.1) |
|lme4 |1.1-37 |2025-03-26 |CRAN (R 4.4.1) |
|lubridate |1.9.4 |2024-12-08 |CRAN (R 4.4.1) |
|magrittr |2.0.3 |2022-03-30 |CRAN (R 4.4.1) |
|markdown |2.0 |2025-03-23 |CRAN (R 4.4.1) |
|MASS |7.3-65 |2025-02-28 |CRAN (R 4.4.1) |
|Matrix |1.7-3 |2025-03-11 |CRAN (R 4.4.1) |
|memoise |2.0.1 |2021-11-26 |CRAN (R 4.4.0) |
|mgcv |1.9-3 |2025-04-04 |CRAN (R 4.4.1) |
|mime |0.13 |2025-03-17 |CRAN (R 4.4.1) |
|miniUI |0.1.2 |2025-04-17 |CRAN (R 4.4.1) |
|minqa |1.2.8 |2024-08-17 |CRAN (R 4.4.1) |
|mvtnorm |1.3-3 |2025-01-10 |CRAN (R 4.4.1) |
|NHANES |2.1.0 |2015-07-02 |CRAN (R 4.4.0) |
|nlme |3.1-168 |2025-03-31 |CRAN (R 4.4.1) |
|nloptr |2.2.1 |2025-03-17 |CRAN (R 4.4.1) |
|nnet |7.3-20 |2025-01-01 |CRAN (R 4.4.1) |
|officer |0.6.8 |2025-03-23 |CRAN (R 4.4.1) |
|officer |0.6.10 |2025-05-30 |CRAN (R 4.4.1) |
|opdisDownsampling |1.0.1 |2024-04-15 |CRAN (R 4.4.0) |
|openssl |2.3.2 |2025-02-03 |CRAN (R 4.4.1) |
|openxlsx2 |1.15 |2025-04-25 |CRAN (R 4.4.1) |
|parameters |0.24.2 |2025-03-04 |CRAN (R 4.4.1) |
|patchwork |1.3.0 |2024-09-16 |CRAN (R 4.4.1) |
|openssl |2.3.3 |2025-05-26 |CRAN (R 4.4.1) |
|openxlsx2 |1.18 |2025-07-29 |CRAN (R 4.4.1) |
|parameters |0.27.0 |2025-07-09 |CRAN (R 4.4.1) |
|patchwork |1.3.1 |2025-06-21 |CRAN (R 4.4.1) |
|pbmcapply |1.5.1 |2022-04-28 |CRAN (R 4.4.1) |
|performance |0.13.0 |2025-01-15 |CRAN (R 4.4.1) |
|performance |0.15.0 |2025-07-10 |CRAN (R 4.4.1) |
|phosphoricons |0.2.1 |2024-04-08 |CRAN (R 4.4.0) |
|pillar |1.10.2 |2025-04-05 |CRAN (R 4.4.1) |
|pkgbuild |1.4.7 |2025-03-24 |CRAN (R 4.4.1) |
|pillar |1.11.0 |2025-07-04 |CRAN (R 4.4.1) |
|pkgbuild |1.4.8 |2025-05-26 |CRAN (R 4.4.1) |
|pkgconfig |2.0.3 |2019-09-22 |CRAN (R 4.4.1) |
|pkgload |1.4.0 |2024-06-28 |CRAN (R 4.4.0) |
|plyr |1.8.9 |2023-10-02 |CRAN (R 4.4.1) |
@ -154,35 +151,36 @@
|pracma |2.4.4 |2023-11-10 |CRAN (R 4.4.1) |
|processx |3.8.6 |2025-02-21 |CRAN (R 4.4.1) |
|profvis |0.4.0 |2024-09-20 |CRAN (R 4.4.1) |
|promises |1.3.2 |2024-11-28 |CRAN (R 4.4.1) |
|promises |1.3.3 |2025-05-29 |CRAN (R 4.4.1) |
|proxy |0.4-27 |2022-06-09 |CRAN (R 4.4.1) |
|ps |1.9.1 |2025-04-12 |CRAN (R 4.4.1) |
|purrr |1.0.4 |2025-02-05 |CRAN (R 4.4.1) |
|purrr |1.1.0 |2025-07-10 |CRAN (R 4.4.1) |
|qqconf |1.3.2 |2023-04-14 |CRAN (R 4.4.0) |
|qqplotr |0.0.6 |2023-01-25 |CRAN (R 4.4.0) |
|quarto |1.4.4 |2024-07-20 |CRAN (R 4.4.0) |
|R.cache |0.16.0 |2022-07-21 |CRAN (R 4.4.0) |
|quarto |1.5.0 |2025-07-28 |RSPM (R 4.4.0) |
|R.cache |0.17.0 |2025-05-02 |CRAN (R 4.4.1) |
|R.methodsS3 |1.8.2 |2022-06-13 |CRAN (R 4.4.1) |
|R.oo |1.27.0 |2024-11-01 |CRAN (R 4.4.1) |
|R.oo |1.27.1 |2025-05-02 |CRAN (R 4.4.1) |
|R.utils |2.13.0 |2025-02-24 |CRAN (R 4.4.1) |
|R6 |2.6.1 |2025-02-15 |CRAN (R 4.4.1) |
|ragg |1.4.0 |2025-04-10 |CRAN (R 4.4.1) |
|rankinPlot |1.1.0 |2023-01-30 |CRAN (R 4.4.0) |
|rappdirs |0.3.3 |2021-01-31 |CRAN (R 4.4.1) |
|rbibutils |2.3 |2024-10-04 |CRAN (R 4.4.1) |
|RColorBrewer |1.1-3 |2022-04-03 |CRAN (R 4.4.1) |
|Rcpp |1.0.14 |2025-01-12 |CRAN (R 4.4.1) |
|RcppArmadillo |14.4.2-1 |2025-04-25 |CRAN (R 4.4.1) |
|Rcpp |1.1.0 |2025-07-02 |CRAN (R 4.4.1) |
|RcppArmadillo |14.6.0-1 |2025-07-02 |CRAN (R 4.4.1) |
|Rdpack |2.6.4 |2025-04-09 |CRAN (R 4.4.1) |
|reactable |0.4.4 |2023-03-12 |CRAN (R 4.4.0) |
|readODS |2.3.2 |2025-01-13 |CRAN (R 4.4.1) |
|readr |2.1.5 |2024-01-10 |CRAN (R 4.4.0) |
|readxl |1.4.5 |2025-03-07 |CRAN (R 4.4.1) |
|REDCapCAST |25.3.2 |2025-03-10 |CRAN (R 4.4.1) |
|REDCapR |1.4.0 |2025-01-11 |CRAN (R 4.4.1) |
|reformulas |0.4.0 |2024-11-03 |CRAN (R 4.4.1) |
|REDCapR |1.5.0 |2025-07-28 |CRAN (R 4.4.1) |
|reformulas |0.4.1 |2025-04-30 |CRAN (R 4.4.1) |
|remotes |2.5.0 |2024-03-17 |CRAN (R 4.4.1) |
|rempsyc |0.1.9 |2025-02-01 |CRAN (R 4.4.1) |
|renv |1.1.4 |2025-03-20 |CRAN (R 4.4.1) |
|renv |1.1.5 |2025-07-24 |CRAN (R 4.4.1) |
|reshape2 |1.4.4 |2020-04-09 |CRAN (R 4.4.0) |
|rio |1.2.3 |2024-09-25 |CRAN (R 4.4.1) |
|rlang |1.1.6 |2025-04-11 |CRAN (R 4.4.1) |
@ -190,14 +188,15 @@
|robustbase |0.99-4-1 |2024-09-27 |CRAN (R 4.4.1) |
|roxygen2 |7.3.2 |2024-06-28 |CRAN (R 4.4.0) |
|rpart |4.1.24 |2025-01-07 |CRAN (R 4.4.1) |
|rprojroot |2.0.4 |2023-11-05 |CRAN (R 4.4.1) |
|rsconnect |1.3.4 |2025-01-22 |CRAN (R 4.4.1) |
|rprojroot |2.1.0 |2025-07-12 |CRAN (R 4.4.1) |
|rsconnect |1.5.0 |2025-06-26 |CRAN (R 4.4.1) |
|rstudioapi |0.17.1 |2024-10-22 |CRAN (R 4.4.1) |
|sass |0.4.10 |2025-04-11 |CRAN (R 4.4.1) |
|scales |1.4.0 |2025-04-24 |CRAN (R 4.4.1) |
|see |0.11.0 |2025-03-11 |CRAN (R 4.4.1) |
|sessioninfo |1.2.3 |2025-02-05 |CRAN (R 4.4.1) |
|shiny |1.10.0 |2024-12-14 |CRAN (R 4.4.1) |
|shiny |1.11.1 |2025-07-03 |CRAN (R 4.4.1) |
|shiny.i18n |0.3.0 |2023-01-16 |CRAN (R 4.4.0) |
|shinybusy |0.3.3 |2024-03-09 |CRAN (R 4.4.0) |
|shinyjs |2.1.0 |2021-12-23 |CRAN (R 4.4.0) |
|shinyTime |1.0.3 |2022-08-19 |CRAN (R 4.4.0) |
@ -205,11 +204,11 @@
|stringi |1.8.7 |2025-03-27 |CRAN (R 4.4.1) |
|stringr |1.5.1 |2023-11-14 |CRAN (R 4.4.0) |
|styler |1.10.3 |2024-04-07 |CRAN (R 4.4.0) |
|systemfonts |1.2.2 |2025-04-04 |CRAN (R 4.4.1) |
|systemfonts |1.2.3 |2025-04-30 |CRAN (R 4.4.1) |
|testthat |3.2.3 |2025-01-13 |CRAN (R 4.4.1) |
|textshaping |1.0.0 |2025-01-20 |CRAN (R 4.4.1) |
|thematic |0.1.6 |2024-07-29 |CRAN (R 4.4.0) |
|tibble |3.2.1 |2023-03-20 |CRAN (R 4.4.0) |
|textshaping |1.0.1 |2025-05-01 |CRAN (R 4.4.1) |
|thematic |0.1.7 |2025-06-19 |CRAN (R 4.4.1) |
|tibble |3.3.0 |2025-06-08 |CRAN (R 4.4.1) |
|tidyr |1.3.1 |2024-01-24 |CRAN (R 4.4.1) |
|tidyselect |1.2.1 |2024-03-11 |CRAN (R 4.4.0) |
|timechange |0.3.0 |2024-01-18 |CRAN (R 4.4.1) |
@ -219,7 +218,9 @@
|tzdb |0.5.0 |2025-03-15 |CRAN (R 4.4.1) |
|urlchecker |1.0.1 |2021-11-30 |CRAN (R 4.4.1) |
|usethis |3.1.0 |2024-11-26 |CRAN (R 4.4.1) |
|utf8 |1.2.6 |2025-06-08 |CRAN (R 4.4.1) |
|uuid |1.2-1 |2024-07-29 |CRAN (R 4.4.1) |
|V8 |6.0.6 |2025-08-18 |CRAN (R 4.4.1) |
|vctrs |0.6.5 |2023-12-01 |CRAN (R 4.4.0) |
|vroom |1.6.5 |2023-12-05 |CRAN (R 4.4.0) |
|withr |3.0.2 |2024-10-28 |CRAN (R 4.4.1) |
@ -228,4 +229,4 @@
|xml2 |1.3.8 |2025-03-14 |CRAN (R 4.4.1) |
|xtable |1.8-4 |2019-04-21 |CRAN (R 4.4.1) |
|yaml |2.3.10 |2024-07-26 |CRAN (R 4.4.1) |
|zip |2.3.2 |2025-02-01 |CRAN (R 4.4.1) |
|zip |2.3.3 |2025-05-13 |CRAN (R 4.4.1) |

View file

@ -1,9 +1,9 @@
FROM rocker/geospatial:4.4.1
RUN apt-get update -y && apt-get install -y cmake make libcurl4-openssl-dev libicu-dev libssl-dev pandoc zlib1g-dev libsecret-1-dev libxml2-dev libx11-dev libcairo2-dev libfontconfig1-dev libfreetype6-dev libfribidi-dev libharfbuzz-dev libjpeg-dev libpng-dev libtiff-dev libfftw3-dev libsodium-dev && rm -rf /var/lib/apt/lists/*
RUN apt-get update -y && apt-get install -y cmake make libcurl4-openssl-dev libicu-dev libssl-dev pandoc zlib1g-dev libsecret-1-dev libxml2-dev libx11-dev libcairo2-dev libfontconfig1-dev libfreetype6-dev libfribidi-dev libharfbuzz-dev libjpeg-dev libpng-dev libtiff-dev libfftw3-dev && rm -rf /var/lib/apt/lists/*
RUN mkdir -p /usr/local/lib/R/etc/ /usr/lib/R/etc/
RUN echo "options(renv.config.pak.enabled = FALSE, repos = c(CRAN = 'https://cran.rstudio.com/'), download.file.method = 'libcurl', Ncpus = 4)" | tee /usr/local/lib/R/etc/Rprofile.site | tee /usr/lib/R/etc/Rprofile.site
RUN R -e 'install.packages("remotes")'
RUN R -e 'remotes::install_version("renv", version = "1.1.4")'
RUN R -e 'remotes::install_version("renv", version = "1.1.5")'
COPY renv.lock renv.lock
RUN --mount=type=cache,id=renv-cache,target=/root/.cache/R/renv R -e 'renv::restore()'
WORKDIR /srv/shiny-server/

File diff suppressed because it is too large Load diff

File diff suppressed because one or more lines are too long

View file

@ -1,31 +1,19 @@
# Welcome <img style="float: right;" src="FreesearchR-logo.png">
# Welcome <img src="FreesearchR-logo.png" style="float: right;"/>
This is the ***FreesearchR*** data analysis tool. We intend ***FreesearchR*** to be a free tool for easy data evaluation and analysis. If you need more advanced tools, start with ***FreesearchR*** and then you'll probably be better off using *R* or similar directly.
This is the ***FreesearchR*** data analysis tool, a free tool for basic data evaluation and analysis. If you need more advanced tools, start with ***FreesearchR*** and then you'll probably be better off using *R* or similar directly.
Here is a brief summary of the functions:
With this tool you can:
1. **Import data** from a spreadsheet/file on your machine, direct export from a REDCap server, sample data or data from a your local environment if run locally.
1. **Import data** from a spreadsheet/file on your machine, directly from a [REDCap](https://projectredcap.org/ "Read more on the data capture tool REDCap") server, try it with sample data or access data directly [if run in R locally](https://agdamsbo.github.io/FreesearchR//#run-locally-on-your-own-machine "Read about running FreesearchR on your local machine")
1. **Data inspection** and **modification** like modifying variables or creating new (categorical from numeric or time data, or completely new variables from the data)
2. **Prepare** data for analysis by filtering data, modifying variables or create new variables
1. **Evaluate data** using descriptive analyses methods and inspect cross-correlations
3. **Evaluate data** using descriptive analyses methods and inspect cross-correlations as well as [missing observations](https://agdamsbo.github.io/FreesearchR/articles/missingness.html "Read more about missing data")
1. **Create and export simple, clean plots** for data overview and insights
4. **Visualise data** by [creating simple, clean plots](https://agdamsbo.github.io/FreesearchR/articles/visuals.html "See available plot types") for overview and quick insights
1. **Create regression simple models** for even more advanced data analyses
5. **Create simple regression models** for even more advanced data analyses
- Linear, dichotomous or ordinal logistic regression will be used depending on specified outcome variable
6. **Download** results as a report, get the modified data set and save the code for learning and to reproduce the results later
- Plot regression analysis coefficients
- Evaluate model assumptions
1. **Export results**
- Descriptive and regression analyses results for MS Word or [LibreOffice](https://www.libreoffice.org/)
- Modified data with preserved metadata
- Code to recreate all steps locally
The full [project documentation is here](https://agdamsbo.github.io/FreesearchR/) where you'll find detailed description of the app and link to the source code! If you want to [share feedback, please follow this link to a simple survey](https://redcap.au.dk/surveys/?s=JPCLPTXYDKFA8DA8).
The full [project documentation is here](https://agdamsbo.github.io/FreesearchR/) where you'll find detailed descriptions of the app and link to the source code! If you want to [share feedback, please follow this link to a simple survey](https://redcap.au.dk/surveys/?s=JPCLPTXYDKFA8DA8).

57
app_docker/www/scripts.js Normal file
View file

@ -0,0 +1,57 @@
// Automatically close drop-downs on navigation
// Thanks to claude.ai
$(document).on('shown.bs.tab', '#main_panel', function(e) {
// Close dropdown in this specific navset only
$('#main_panel .dropdown-menu').removeClass('show');
$('#main_panel .dropdown-toggle').removeClass('show').attr('aria-expanded', 'false');
});
$(document).on('shiny:sessioninitialized', function() {
// Function to collapse navbar on mobile
function collapseNavbar() {
var navbar = $('.navbar-collapse');
if (navbar.hasClass('show')) {
navbar.removeClass('show');
$('.navbar-toggler').addClass('collapsed');
$('.navbar-toggler').attr('aria-expanded', 'false');
}
}
// Main approach: Handle clicks on nav elements
$(document).on('click', '.navbar-nav .nav-link, .dropdown-item', function(event) {
var $target = $(event.currentTarget);
// Don't collapse if this is a dropdown toggle
if ($target.hasClass('dropdown-toggle')) {
return;
}
// Don't collapse if this is inside a dropdown and the dropdown should stay open
if ($target.hasClass('nav-link') && $target.closest('.dropdown').length &&
!$target.attr('data-bs-toggle')) {
return;
}
// Collapse the navbar after a short delay
setTimeout(collapseNavbar, 10);
});
// Handle tab toggles specifically
$(document).on('click', '.nav-link[data-bs-toggle="tab"]', function() {
if (!$(this).hasClass('dropdown-toggle')) {
setTimeout(collapseNavbar, 10);
}
});
// Optional: Handle clicks outside the navbar to close it
$(document).on('click', function(event) {
var navbar = $('.navbar-collapse');
// Check if click is outside navbar and navbar is open
if (navbar.hasClass('show') &&
!$(event.target).closest('.navbar').length) {
collapseNavbar();
}
});
});

View file

@ -0,0 +1,133 @@
#' Data and analyses validation demo
#'
#' @returns
#' @export
#'
#' @examples
#' \dontrun{
#' validation_demo_app()
#' }
validation_demo_app <- function() {
ui <- shiny::fluidPage(
shiny::tags$h2("Validation"),
IDEAFilter::IDEAFilter_ui("data_filter"),
shiny::br(),
DT::DTOutput("data_final"),
shiny::br(),
validation_ui("validation_demo_2")
)
server <- function(input, output, session) {
rv <- shiny::reactiveValues(
data_original = shiny::reactive(mtcars),
data_filtered = NULL
)
rv_validation <- shiny::reactiveValues(
obs_filter = NULL,
vars_filter = NULL
)
data_filter <- IDEAFilter::IDEAFilter(
id = "data_filter",
data = mtcars,
verbose = TRUE
)
shiny::observeEvent(
data_filter(),
{
rv$data_filtered <- data_filter()
}
)
output$data_final <- DT::renderDT(
data_filter()
)
shiny::observeEvent(
list(
data_filter()
),
{
to_make_validation <- data_filter()
## Validation
if (!is.null(to_make_validation)) {
validation <-
make_validation(
ls = validation_lib("obs_filter"),
list(
x = mtcars,
y = to_make_validation
)
)
rv_validation$vars_filter <- validation
validation_server(id = "validation_demo_2", data = rv_validation$vars_filter)
}
}
)
# shiny::observeEvent(
# list(
# shiny::reactive(rv_validation$vars_filter)(),
# data_filter()
# ),
# {
# # browser()
# # to_make_alert <- shiny::isolate(rv_validation$vars_filter)
# to_make_alert <- shiny::reactive(rv_validation$vars_filter)()
# if (!is.null(rv_validation$vars_filter)) {
# validation_server(id = "validation_demo_2", data = to_make_alert)
# }
# }
# )
}
shiny::shinyApp(ui, server)
}
#' Title
#'
#' @returns
#' @export
#'
#' @examples
#' validation_nr_demo_app()
validation_nr_demo_app <- function() {
ui <- shiny::fluidPage(
shiny::tags$h2("Validation"),
shiny::br(),
validation_ui("validation_demo_1", max_height = "30px"),
shiny::br(),
validation_ui("validation_demo_2")
)
server <- function(input, output, session) {
df_original <- mtcars
df_obs <- mtcars |> dplyr::filter(mpg > 20)
df_vars <- df_obs[1:6]
val1 <- purrr::map2(
.x = validation_lib()[1],
.y = list(list(x = df_original, y = df_obs)),
make_validation
)
val2 <- make_validation(
ls = validation_lib()[[2]],
list(x = df_original, y = df_vars)
)
validation_server(id = "validation_demo_1", data = val1)
validation_server(id = "validation_demo_2", data = val2)
}
shiny::shinyApp(ui, server)
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 36 36"><path fill="#C60C30" d="M32 5H15v11h21V9c0-2.209-1.791-4-4-4zM15 31h17c2.209 0 4-1.791 4-4.5V20H15v11zM0 20v6.5C0 29.209 1.791 31 4 31h7V20H0zM11 5H4C1.791 5 0 6.791 0 9v7h11V5z"/><path fill="#EEE" d="M15 5h-4v11H0v4h11v11h4V20h21v-4H15z"/></svg>

After

Width:  |  Height:  |  Size: 306 B

View file

@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 36 36"><path fill="#00247D" d="M0 9.059V13h5.628zM4.664 31H13v-5.837zM23 25.164V31h8.335zM0 23v3.941L5.63 23zM31.337 5H23v5.837zM36 26.942V23h-5.631zM36 13V9.059L30.371 13zM13 5H4.664L13 10.837z"/><path fill="#CF1B2B" d="M25.14 23l9.712 6.801c.471-.479.808-1.082.99-1.749L28.627 23H25.14zM13 23h-2.141l-9.711 6.8c.521.53 1.189.909 1.938 1.085L13 23.943V23zm10-10h2.141l9.711-6.8c-.521-.53-1.188-.909-1.937-1.085L23 12.057V13zm-12.141 0L1.148 6.2C.677 6.68.34 7.282.157 7.949L7.372 13h3.487z"/><path fill="#EEE" d="M36 21H21v10h2v-5.836L31.335 31H32c1.117 0 2.126-.461 2.852-1.199L25.14 23h3.487l7.215 5.052c.093-.337.158-.686.158-1.052v-.058L30.369 23H36v-2zM0 21v2h5.63L0 26.941V27c0 1.091.439 2.078 1.148 2.8l9.711-6.8H13v.943l-9.914 6.941c.294.07.598.116.914.116h.664L13 25.163V31h2V21H0zM36 9c0-1.091-.439-2.078-1.148-2.8L25.141 13H23v-.943l9.915-6.942C32.62 5.046 32.316 5 32 5h-.663L23 10.837V5h-2v10h15v-2h-5.629L36 9.059V9zM13 5v5.837L4.664 5H4c-1.118 0-2.126.461-2.852 1.2l9.711 6.8H7.372L.157 7.949C.065 8.286 0 8.634 0 9v.059L5.628 13H0v2h15V5h-2z"/><path fill="#CF1B2B" d="M21 15V5h-6v10H0v6h15v10h6V21h15v-6z"/></svg>

After

Width:  |  Height:  |  Size: 1.2 KiB

View file

@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 36 36"><path fill="#1EB53A" d="M4 5C1.791 5 0 6.791 0 9v15.627L26.456 5H4z"/><path fill="#00A3DD" d="M32 31c2.209 0 4-1.791 4-4V11.33L9.479 31H32z"/><path fill="#141414" d="M32 5h-2.532L0 26.638V27c0 2.209 1.791 4 4 4h2.467L36 9.318V9c0-2.209-1.791-4-4-4z"/><path fill="#FBD035" d="M26.456 5L0 24.627v2.011L29.468 5zM9.479 31L36 11.33V9.318L6.467 31z"/></svg>

After

Width:  |  Height:  |  Size: 413 B

File diff suppressed because one or more lines are too long

View file

@ -1,31 +1,23 @@
# Welcome <img style="float: right;" src="FreesearchR-logo.png">
---
output: html_fragment
---
This is the ***FreesearchR*** data analysis tool. We intend ***FreesearchR*** to be a free tool for easy data evaluation and analysis. If you need more advanced tools, start with ***FreesearchR*** and then you'll probably be better off using *R* or similar directly.
# Welcome <img src="FreesearchR-logo.png" style="float: right;"/>
Here is a brief summary of the functions:
This is the ***FreesearchR*** data analysis tool, a free tool for basic data evaluation and analysis. If you need more advanced tools, start with ***FreesearchR*** and then you'll probably be better off using *R* or similar directly.
1. **Import data** from a spreadsheet/file on your machine, direct export from a REDCap server, sample data or data from a your local environment if run locally.
With this tool you can:
1. **Data inspection** and **modification** like modifying variables or creating new (categorical from numeric or time data, or completely new variables from the data)
1. **Import data** from a spreadsheet/file on your machine, directly from a [REDCap](https://projectredcap.org/ "Read more on the data capture tool REDCap") server, try it with sample data or access data directly [if run in R locally](https://agdamsbo.github.io/FreesearchR//#run-locally-on-your-own-machine "Read about running FreesearchR on your local machine")
1. **Evaluate data** using descriptive analyses methods and inspect cross-correlations
2. **Prepare** data for analysis by filtering data, modifying variables or create new variables
1. **Create and export simple, clean plots** for data overview and insights
3. **Evaluate data** using descriptive analyses methods and inspect cross-correlations as well as [missing observations](https://agdamsbo.github.io/FreesearchR/articles/missingness.html "Read more about missing data")
1. **Create regression simple models** for even more advanced data analyses
4. **Visualise data** by [creating simple, clean plots](https://agdamsbo.github.io/FreesearchR/articles/visuals.html "See available plot types") for overview and quick insights
- Linear, dichotomous or ordinal logistic regression will be used depending on specified outcome variable
5. **Create simple regression models** for even more advanced data analyses
- Plot regression analysis coefficients
6. **Download** results as a report, get the modified data set and save the code for learning and to reproduce the results later
- Evaluate model assumptions
1. **Export results**
- Descriptive and regression analyses results for MS Word or [LibreOffice](https://www.libreoffice.org/)
- Modified data with preserved metadata
- Code to recreate all steps locally
The full [project documentation is here](https://agdamsbo.github.io/FreesearchR/) where you'll find detailed description of the app and link to the source code! If you want to [share feedback, please follow this link to a simple survey](https://redcap.au.dk/surveys/?s=JPCLPTXYDKFA8DA8).
The full [project documentation is here](https://agdamsbo.github.io/FreesearchR/) where you'll find detailed descriptions of the app and link to the source code! If you want to [share feedback, please follow this link to a simple survey](https://redcap.au.dk/surveys/?s=JPCLPTXYDKFA8DA8).

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1,23 @@
---
output: html_fragment
---
# Velkommen <img src="FreesearchR-logo.png" style="float: right;"/>
Dette er ***FreesearchR***-værktøjet, et gratis værktøj til databehandling og -analyse. Har du brug for mere avancerede værktøjer, så kan du starte ***FreesearchR*** og senere selv hente *R* og *RStudio* eller lignende.
Herunder kan du helt kort se, hvad du kan bruge ***FreesearchR*** til:
1. **Import data** from a spreadsheet/file on your machine, directly from a [REDCap](https://projectredcap.org/ "Read more on the data capture tool REDCap") server, try it with sample data or access data directly [if run in R locally](https://agdamsbo.github.io/FreesearchR//#run-locally-on-your-own-machine "Read about running FreesearchR on your local machine")
2. **Prepare** data for analysis by filtering data, modifying variables or create new variables
3. **Evaluate data** using descriptive analyses methods and inspect cross-correlations as well as [missing observations](https://agdamsbo.github.io/FreesearchR/articles/missingness.html "Read more about missing data")
4. **Visualise data** by [creating simple, clean plots](https://agdamsbo.github.io/FreesearchR/articles/visuals.html "See available plot types") for overview and quick insights
5. **Create simple regression models** for even more advanced data analyses
6. **Download** results as a report, get the modified data set and save the code for learning and to reproduce the results later
The full [project documentation is here](https://agdamsbo.github.io/FreesearchR/) where you'll find detailed descriptions of the app and link to the source code! If you want to [share feedback, please follow this link to a simple survey](https://redcap.au.dk/surveys/?s=JPCLPTXYDKFA8DA8).

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1,23 @@
---
output: html_fragment
---
# Karibu <img src="FreesearchR-logo.png" style="float: right;"/>
This is the ***FreesearchR*** data analysis tool, a free tool for basic data evaluation and analysis. If you need more advanced tools, start with ***FreesearchR*** and then you'll probably be better off using *R* or similar directly.
With this tool you can:
1. **Import data** from a spreadsheet/file on your machine, directly from a [REDCap](https://projectredcap.org/ "Read more on the data capture tool REDCap") server, try it with sample data or access data directly [if run in R locally](https://agdamsbo.github.io/FreesearchR//#run-locally-on-your-own-machine "Read about running FreesearchR on your local machine")
2. **Prepare** data for analysis by filtering data, modifying variables or create new variables
3. **Evaluate data** using descriptive analyses methods and inspect cross-correlations as well as [missing observations](https://agdamsbo.github.io/FreesearchR/articles/missingness.html "Read more about missing data")
4. **Visualise data** by [creating simple, clean plots](https://agdamsbo.github.io/FreesearchR/articles/visuals.html "See available plot types") for overview and quick insights
5. **Create simple regression models** for even more advanced data analyses
6. **Download** results as a report, get the modified data set and save the code for learning and to reproduce the results later
The full [project documentation is here](https://agdamsbo.github.io/FreesearchR/) where you'll find detailed descriptions of the app and link to the source code! If you want to [share feedback, please follow this link to a simple survey](https://redcap.au.dk/surveys/?s=JPCLPTXYDKFA8DA8).

View file

@ -0,0 +1,74 @@
// Automatically close drop-downs on navigation
// Thanks to claude.ai
$(document).ready(function() {
var language = window.navigator.userLanguage || window.navigator.language;
var iso639Language = language.split('-')[0];
Shiny.onInputChange('browser_lang', iso639Language);
console.log('Browser language:',iso639Language);
});
$(document).on('shown.bs.tab', '#main_panel', function(e) {
// Close dropdown in this specific navset only
$('#main_panel .dropdown-menu').removeClass('show');
$('#main_panel .dropdown-toggle').removeClass('show').attr('aria-expanded', 'false');
});
$(document).on('shiny:sessioninitialized', function() {
// Function to get browser language
// var language = window.navigator.userLanguage || window.navigator.language;
// var iso639Language = language.split('-')[0];
// Shiny.onInputChange('browser_lang', iso639Language);
// console.log('Browser language:',iso639Language);
// Function to collapse navbar on mobile
function collapseNavbar() {
var navbar = $('.navbar-collapse');
if (navbar.hasClass('show')) {
navbar.removeClass('show');
$('.navbar-toggler').addClass('collapsed');
$('.navbar-toggler').attr('aria-expanded', 'false');
}
}
// Main approach: Handle clicks on nav elements
$(document).on('click', '.navbar-nav .nav-link, .dropdown-item', function(event) {
var $target = $(event.currentTarget);
// Don't collapse if this is a dropdown toggle
if ($target.hasClass('dropdown-toggle')) {
return;
}
// Don't collapse if this is inside a dropdown and the dropdown should stay open
if ($target.hasClass('nav-link') && $target.closest('.dropdown').length &&
!$target.attr('data-bs-toggle')) {
return;
}
// Collapse the navbar after a short delay
setTimeout(collapseNavbar, 10);
});
// Handle tab toggles specifically
$(document).on('click', '.nav-link[data-bs-toggle="tab"]', function() {
if (!$(this).hasClass('dropdown-toggle')) {
setTimeout(collapseNavbar, 10);
}
});
// Optional: Handle clicks outside the navbar to close it
$(document).on('click', function(event) {
var navbar = $('.navbar-collapse');
// Check if click is outside navbar and navbar is open
if (navbar.hasClass('show') &&
!$(event.target).closest('.navbar').length) {
collapseNavbar();
}
});
});

View file

@ -123,3 +123,5 @@
background-color: #2E2E2E;
color: #FFFFFF;
}

View file

@ -123,3 +123,5 @@
background-color: #2E2E2E;
color: #FFFFFF;
}

View file

@ -0,0 +1,74 @@
// Automatically close drop-downs on navigation
// Thanks to claude.ai
$(document).ready(function() {
var language = window.navigator.userLanguage || window.navigator.language;
var iso639Language = language.split('-')[0];
Shiny.onInputChange('browser_lang', iso639Language);
console.log('Browser language:',iso639Language);
});
$(document).on('shown.bs.tab', '#main_panel', function(e) {
// Close dropdown in this specific navset only
$('#main_panel .dropdown-menu').removeClass('show');
$('#main_panel .dropdown-toggle').removeClass('show').attr('aria-expanded', 'false');
});
$(document).on('shiny:sessioninitialized', function() {
// Function to get browser language
// var language = window.navigator.userLanguage || window.navigator.language;
// var iso639Language = language.split('-')[0];
// Shiny.onInputChange('browser_lang', iso639Language);
// console.log('Browser language:',iso639Language);
// Function to collapse navbar on mobile
function collapseNavbar() {
var navbar = $('.navbar-collapse');
if (navbar.hasClass('show')) {
navbar.removeClass('show');
$('.navbar-toggler').addClass('collapsed');
$('.navbar-toggler').attr('aria-expanded', 'false');
}
}
// Main approach: Handle clicks on nav elements
$(document).on('click', '.navbar-nav .nav-link, .dropdown-item', function(event) {
var $target = $(event.currentTarget);
// Don't collapse if this is a dropdown toggle
if ($target.hasClass('dropdown-toggle')) {
return;
}
// Don't collapse if this is inside a dropdown and the dropdown should stay open
if ($target.hasClass('nav-link') && $target.closest('.dropdown').length &&
!$target.attr('data-bs-toggle')) {
return;
}
// Collapse the navbar after a short delay
setTimeout(collapseNavbar, 10);
});
// Handle tab toggles specifically
$(document).on('click', '.nav-link[data-bs-toggle="tab"]', function() {
if (!$(this).hasClass('dropdown-toggle')) {
setTimeout(collapseNavbar, 10);
}
});
// Optional: Handle clicks outside the navbar to close it
$(document).on('click', function(event) {
var navbar = $('.navbar-collapse');
// Check if click is outside navbar and navbar is open
if (navbar.hasClass('show') &&
!$(event.target).closest('.navbar').length) {
collapseNavbar();
}
});
});

View file

@ -0,0 +1,145 @@
"en","da"
"Hello","Hej"
"Get started","Kom i gang"
"File upload","Upload fil"
"REDCap server export","REDCap server export"
"Local or sample data","Lokal eller testdata"
"Please be mindfull handling sensitive data","Pas godt på og overvej nøje hvordan du håndterer personfølsomme data"
"The ***FreesearchR*** app only stores data for analyses, but please only use with sensitive data when running locally. [Read more here](https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine).","***FreesearchR*** opbevarer alene data i forbindelse med din analyse, men du bør kun behandle personfølsomme data når du kører ***FreesearchR*** direkte på din egen maskine. [Læs mere her](https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine)."
"Quick overview","Hurtigt overblik"
"Select variables for final import","Vælg variabler til den endelige import"
"Exclude incomplete variables:","Ekskluder inkomplette variabler:"
"Manual selection:","Manuel udvælgelse:"
"Let's begin!","Kom i gang!"
"Analysis validation","Analysevalidering"
"Report","Rapport"
"Choose your favourite output file format for further work, and download, when the analyses are done.","Vælge dit foretrukne dataformat, og hent data, når du er ærdig med databehandlingen."
"www/intro.html","www/intro_da.html"
"<p>The <em><strong>FreesearchR</strong></em> app only stores data for analyses, but please only use with sensitive data when running locally. <a href='https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine'>Read more here</a></p>","<p><em><strong>FreesearchR</strong></em> opbevarer alene data i forbindelse med din analyse, men du bør kun behandle personfølsomme data når du kører <em><strong>FreesearchR</strong></em> direkte på dine egen maskine. <a href='https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine'>Læs mere her</a></p>"
"Overview and filter","Overblik og filtre"
"Overview and filtering","Overblik og filtrering"
"Below you find a summary table for quick insigths, and on the right you can visualise data classes, browse data and apply different data filters.","Below you find a summary table for quick insigths, and on the right you can visualise data classes, browse data and apply different data filters."
"Visual overview","Visuelt overblik"
"Browse data","Udforsk data"
"Filter data types","Filtrer datatyper"
"Filter observations","Filtrer observationer"
"Apply filter on observation","Anvend filtre af observationer"
"Edit and create data","Ændr og opret variabler"
"Subset, rename and convert variables","Udvælg, omdøb og konverter variabler"
"Below, are several options for simple data manipulation like update variables by renaming, creating new labels (for nicer tables in the report) and changing variable classes (numeric, factor/categorical etc.).","Below, are several options for simple data manipulation like update variables by renaming, creating new labels (for nicer tables in the report) and changing variable classes (numeric, factor/categorical etc.)."
"There are more advanced options to modify factor/categorical variables as well as create new factor from a continous variable or new variables with R code. At the bottom you can restore the original data.","There are more advanced options to modify factor/categorical variables as well as create new factor from a continous variable or new variables with R code. At the bottom you can restore the original data."
"Please note that data modifications are applied before any filtering.","Please note that data modifications are applied before any filtering."
"Advanced data manipulation","Avanceret datamanipulation"
"Below options allow more advanced varaible manipulations.","Below options allow more advanced varaible manipulations."
"Reorder factor levels","Arranger niveuer i faktor"
"Reorder the levels of factor/categorical variables.","Reorder the levels of factor/categorical variables."
"New factor","Ny faktor"
"Create factor/categorical variable from a continous variable (number/date/time).","Create factor/categorical variable from a continous variable (number/date/time)."
"New variable","Ny variabel"
"Create a new variable based on an R-expression.","Create a new variable based on an R-expression."
"Compare modified data to original","Compare modified data to original"
"Raw print of the original vs the modified data.","Raw print of the original vs the modified data."
"Original data:","Original data:"
"Modified data:","Ændret data:"
"New column name:","Navn til ny variabel:"
"Group calculation by:","Group calculation by:"
"Enter an expression to define new column:","Enter an expression to define new column:"
"Click on a column name to add it to the expression:","Click on a column name to add it to the expression:"
"Create column","Create column"
"Choose a name for the column to be created or modified,","Choose a name for the column to be created or modified,"
"then enter an expression before clicking on the button above to validate or on","then enter an expression before clicking on the button above to validate or on"
"to delete it.","to delete it."
"New column name cannot be empty","New column name cannot be empty"
"Create a new column","Create a new column"
"Some operations are not allowed","Some operations are not allowed"
"Column added!","Column added!"
"Unique values:","Unique values:"
"Variable to cut:","Variable to cut:"
"Number of breaks:","Number of breaks:"
"Close intervals on the right","Close intervals on the right"
"Include lowest value","Include lowest value"
"Create factor variable","Create factor variable"
"Fixed breaks:","Fixed breaks:"
"Method:","Method:"
"Convert Numeric to Factor","Convert Numeric to Factor"
"Unique:","Unique:"
"Missing:","Missing:"
"Most Common:","Most Common:"
"Min:","Min:"
"Mean:","Mean:"
"Max:","Max:"
"Decimal separator:","Decimal separator:"
"First five rows are shown below:","First five rows are shown below:"
"Imported data","Imported data"
"www/intro.md","www/intro.md"
"Choose your data","Choose your data"
"Upload a file, get data directly from REDCap or use local or sample data.","Upload a file, get data directly from REDCap or use local or sample data."
"Factor variable to reorder:","Factor variable to reorder:"
"Sort by levels","Sort by levels"
"Sort by count","Sort by count"
"Create a new variable (otherwise replaces the one selected)","Create a new variable (otherwise replaces the one selected)"
"Update factor variable","Updater faktor-variabel"
"Sort count","Sorter antal"
"Levels","Niveauer"
"Count","Antal"
"Update levels of a factor","Updater niveauerne for en faktor"
"Update & select variables","Update & select variables"
"Date format:","Datoformat:"
"Date to use as origin to convert date/datetime:","Date to use as origin to convert date/datetime:"
"Apply changes","Apply changes"
"No data to display.","Ingen data at vise."
"Data successfully updated!","Data er opdateret!"
"You removed {p_out} % of observations.","Du har fjernet {p_out} % af observationerne."
"You removed {p_out} % of variables.","Du har fjernet {p_out} % af variablerne."
"You can import {file_extensions_text} files","Du kan vælge mellem disse filtyper: {file_extensions_text}."
"You can choose between these file types:","Du kan vælge mellem følgene filtyper:"
"Rows to skip before reading data:","Rækker der skal springes over:"
"Missing values character(s):","Tegn for manglende værdier:"
"if several use a comma (',') to separate them","if several use a comma (',') to separate them"
"Encoding:","Kodning:"
"Upload a file:","Upload en fil:"
"Browse...","Vælg..."
"Select sheet to import:","Vælg ark:"
"No file selected.","Ingen fil valgt."
"Evaluate","Evaluer"
"Visuals","Grafik"
"Regression","Regression"
"Download","Download"
"{data_text} has {n} observations and {n_var} variables, with {n_complete} ({p_complete} %) complete cases.","{data_text} har {n} observationer og {n_var} variabler, med {n_complete} ({p_complete} %) komplette cases."
"Prepare","Forbered"
"At 0, only complete variables are included; at 100, all variables are included.","At 0, only complete variables are included; at 100, all variables are included."
"The following variable pairs are highly correlated: {sentence_paste(.x,and_str)}.\nConsider excluding one {more}from the dataset to ensure variables are independent.","The following variable pairs are highly correlated: {sentence_paste(.x,and_str)}.\nConsider excluding one {more}from the dataset to ensure variables are independent."
"No variables have a correlation measure above the threshold.","Ingen variabler er korrelerede over den angivne tærskelværdi."
"and","og"
"from each pair","fra hvert par"
"Only non-text variables are available for plotting. Go the ""Data"" to reclass data to plot.","Only non-text variables are available for plotting. Go the ""Data"" to reclass data to plot."
"Plot","Plot"
"Adjust settings, then press ""Plot"".","Adjust settings, then press ""Plot""."
"Plot height (mm)","Plot height (mm)"
"Plot width (mm)","Plot width (mm)"
"File format","File format"
"Download plot","Download plot"
"Select variable","Select variable"
"Response variable","Response variable"
"Plot type","Plot type"
"Please select","Please select"
"Additional variables","Additional variables"
"Secondary variable","Secondary variable"
"No variable","No variable"
"Grouping variable","Grouping variable"
"No stratification","No stratification"
"Drawing the plot. Hold tight for a moment..","Drawing the plot. Hold tight for a moment.."
"#Plotting\n","#Plotting\n"
"Drawing the plot. Hold on for a moment..","Drawing the plot. Hold on for a moment.."
"Stacked horizontal bars","Stacked horizontal bars"
"A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars","A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars"
"Violin plot","Violin plot"
"A modern alternative to the classic boxplot to visualise data distribution","A modern alternative to the classic boxplot to visualise data distribution"
"Sankey plot","Sankey plot"
"A way of visualising change between groups","A way of visualising change between groups"
"Scatter plot","Scatter plot"
"A classic way of showing the association between to variables","A classic way of showing the association between to variables"
"Box plot","Box plot"
"A classic way to plot data distribution by groups","A classic way to plot data distribution by groups"
"Euler diagram","Euler diagram"
"Generate area-proportional Euler diagrams to display set relationships","Generate area-proportional Euler diagrams to display set relationships"
1 en da
2 Hello Hej
3 Get started Kom i gang
4 File upload Upload fil
5 REDCap server export REDCap server export
6 Local or sample data Lokal eller testdata
7 Please be mindfull handling sensitive data Pas godt på og overvej nøje hvordan du håndterer personfølsomme data
8 The ***FreesearchR*** app only stores data for analyses, but please only use with sensitive data when running locally. [Read more here](https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine). ***FreesearchR*** opbevarer alene data i forbindelse med din analyse, men du bør kun behandle personfølsomme data når du kører ***FreesearchR*** direkte på din egen maskine. [Læs mere her](https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine).
9 Quick overview Hurtigt overblik
10 Select variables for final import Vælg variabler til den endelige import
11 Exclude incomplete variables: Ekskluder inkomplette variabler:
12 Manual selection: Manuel udvælgelse:
13 Let's begin! Kom i gang!
14 Analysis validation Analysevalidering
15 Report Rapport
16 Choose your favourite output file format for further work, and download, when the analyses are done. Vælge dit foretrukne dataformat, og hent data, når du er ærdig med databehandlingen.
17 www/intro.html www/intro_da.html
18 <p>The <em><strong>FreesearchR</strong></em> app only stores data for analyses, but please only use with sensitive data when running locally. <a href='https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine'>Read more here</a></p> <p><em><strong>FreesearchR</strong></em> opbevarer alene data i forbindelse med din analyse, men du bør kun behandle personfølsomme data når du kører <em><strong>FreesearchR</strong></em> direkte på dine egen maskine. <a href='https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine'>Læs mere her</a></p>
19 Overview and filter Overblik og filtre
20 Overview and filtering Overblik og filtrering
21 Below you find a summary table for quick insigths, and on the right you can visualise data classes, browse data and apply different data filters. Below you find a summary table for quick insigths, and on the right you can visualise data classes, browse data and apply different data filters.
22 Visual overview Visuelt overblik
23 Browse data Udforsk data
24 Filter data types Filtrer datatyper
25 Filter observations Filtrer observationer
26 Apply filter on observation Anvend filtre af observationer
27 Edit and create data Ændr og opret variabler
28 Subset, rename and convert variables Udvælg, omdøb og konverter variabler
29 Below, are several options for simple data manipulation like update variables by renaming, creating new labels (for nicer tables in the report) and changing variable classes (numeric, factor/categorical etc.). Below, are several options for simple data manipulation like update variables by renaming, creating new labels (for nicer tables in the report) and changing variable classes (numeric, factor/categorical etc.).
30 There are more advanced options to modify factor/categorical variables as well as create new factor from a continous variable or new variables with R code. At the bottom you can restore the original data. There are more advanced options to modify factor/categorical variables as well as create new factor from a continous variable or new variables with R code. At the bottom you can restore the original data.
31 Please note that data modifications are applied before any filtering. Please note that data modifications are applied before any filtering.
32 Advanced data manipulation Avanceret datamanipulation
33 Below options allow more advanced varaible manipulations. Below options allow more advanced varaible manipulations.
34 Reorder factor levels Arranger niveuer i faktor
35 Reorder the levels of factor/categorical variables. Reorder the levels of factor/categorical variables.
36 New factor Ny faktor
37 Create factor/categorical variable from a continous variable (number/date/time). Create factor/categorical variable from a continous variable (number/date/time).
38 New variable Ny variabel
39 Create a new variable based on an R-expression. Create a new variable based on an R-expression.
40 Compare modified data to original Compare modified data to original
41 Raw print of the original vs the modified data. Raw print of the original vs the modified data.
42 Original data: Original data:
43 Modified data: Ændret data:
44 New column name: Navn til ny variabel:
45 Group calculation by: Group calculation by:
46 Enter an expression to define new column: Enter an expression to define new column:
47 Click on a column name to add it to the expression: Click on a column name to add it to the expression:
48 Create column Create column
49 Choose a name for the column to be created or modified, Choose a name for the column to be created or modified,
50 then enter an expression before clicking on the button above to validate or on then enter an expression before clicking on the button above to validate or on
51 to delete it. to delete it.
52 New column name cannot be empty New column name cannot be empty
53 Create a new column Create a new column
54 Some operations are not allowed Some operations are not allowed
55 Column added! Column added!
56 Unique values: Unique values:
57 Variable to cut: Variable to cut:
58 Number of breaks: Number of breaks:
59 Close intervals on the right Close intervals on the right
60 Include lowest value Include lowest value
61 Create factor variable Create factor variable
62 Fixed breaks: Fixed breaks:
63 Method: Method:
64 Convert Numeric to Factor Convert Numeric to Factor
65 Unique: Unique:
66 Missing: Missing:
67 Most Common: Most Common:
68 Min: Min:
69 Mean: Mean:
70 Max: Max:
71 Decimal separator: Decimal separator:
72 First five rows are shown below: First five rows are shown below:
73 Imported data Imported data
74 www/intro.md www/intro.md
75 Choose your data Choose your data
76 Upload a file, get data directly from REDCap or use local or sample data. Upload a file, get data directly from REDCap or use local or sample data.
77 Factor variable to reorder: Factor variable to reorder:
78 Sort by levels Sort by levels
79 Sort by count Sort by count
80 Create a new variable (otherwise replaces the one selected) Create a new variable (otherwise replaces the one selected)
81 Update factor variable Updater faktor-variabel
82 Sort count Sorter antal
83 Levels Niveauer
84 Count Antal
85 Update levels of a factor Updater niveauerne for en faktor
86 Update & select variables Update & select variables
87 Date format: Datoformat:
88 Date to use as origin to convert date/datetime: Date to use as origin to convert date/datetime:
89 Apply changes Apply changes
90 No data to display. Ingen data at vise.
91 Data successfully updated! Data er opdateret!
92 You removed {p_out} % of observations. Du har fjernet {p_out} % af observationerne.
93 You removed {p_out} % of variables. Du har fjernet {p_out} % af variablerne.
94 You can import {file_extensions_text} files Du kan vælge mellem disse filtyper: {file_extensions_text}.
95 You can choose between these file types: Du kan vælge mellem følgene filtyper:
96 Rows to skip before reading data: Rækker der skal springes over:
97 Missing values character(s): Tegn for manglende værdier:
98 if several use a comma (',') to separate them if several use a comma (',') to separate them
99 Encoding: Kodning:
100 Upload a file: Upload en fil:
101 Browse... Vælg...
102 Select sheet to import: Vælg ark:
103 No file selected. Ingen fil valgt.
104 Evaluate Evaluer
105 Visuals Grafik
106 Regression Regression
107 Download Download
108 {data_text} has {n} observations and {n_var} variables, with {n_complete} ({p_complete} %) complete cases. {data_text} har {n} observationer og {n_var} variabler, med {n_complete} ({p_complete} %) komplette cases.
109 Prepare Forbered
110 At 0, only complete variables are included; at 100, all variables are included. At 0, only complete variables are included; at 100, all variables are included.
111 The following variable pairs are highly correlated: {sentence_paste(.x,and_str)}.\nConsider excluding one {more}from the dataset to ensure variables are independent. The following variable pairs are highly correlated: {sentence_paste(.x,and_str)}.\nConsider excluding one {more}from the dataset to ensure variables are independent.
112 No variables have a correlation measure above the threshold. Ingen variabler er korrelerede over den angivne tærskelværdi.
113 and og
114 from each pair fra hvert par
115 Only non-text variables are available for plotting. Go the "Data" to reclass data to plot. Only non-text variables are available for plotting. Go the "Data" to reclass data to plot.
116 Plot Plot
117 Adjust settings, then press "Plot". Adjust settings, then press "Plot".
118 Plot height (mm) Plot height (mm)
119 Plot width (mm) Plot width (mm)
120 File format File format
121 Download plot Download plot
122 Select variable Select variable
123 Response variable Response variable
124 Plot type Plot type
125 Please select Please select
126 Additional variables Additional variables
127 Secondary variable Secondary variable
128 No variable No variable
129 Grouping variable Grouping variable
130 No stratification No stratification
131 Drawing the plot. Hold tight for a moment.. Drawing the plot. Hold tight for a moment..
132 #Plotting\n #Plotting\n
133 Drawing the plot. Hold on for a moment.. Drawing the plot. Hold on for a moment..
134 Stacked horizontal bars Stacked horizontal bars
135 A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars
136 Violin plot Violin plot
137 A modern alternative to the classic boxplot to visualise data distribution A modern alternative to the classic boxplot to visualise data distribution
138 Sankey plot Sankey plot
139 A way of visualising change between groups A way of visualising change between groups
140 Scatter plot Scatter plot
141 A classic way of showing the association between to variables A classic way of showing the association between to variables
142 Box plot Box plot
143 A classic way to plot data distribution by groups A classic way to plot data distribution by groups
144 Euler diagram Euler diagram
145 Generate area-proportional Euler diagrams to display set relationships Generate area-proportional Euler diagrams to display set relationships

View file

@ -0,0 +1,145 @@
"en","sw"
"Hello","Habari"
"Get started","Get started"
"File upload","File upload"
"REDCap server export","REDCap server export"
"Local or sample data","Local or sample data"
"Please be mindfull handling sensitive data","Please be mindfull handling sensitive data"
"The ***FreesearchR*** app only stores data for analyses, but please only use with sensitive data when running locally. [Read more here](https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine).","The ***FreesearchR*** app only stores data for analyses, but please only use with sensitive data when running locally. [Read more here](https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine)."
"Quick overview","Quick overview"
"Select variables for final import","Select variables for final import"
"Exclude incomplete variables:","Exclude incomplete variables:"
"Manual selection:","Manual selection:"
"Let's begin!","Let's begin!"
"Analysis validation","Analysis validation"
"Report","Report"
"Choose your favourite output file format for further work, and download, when the analyses are done.","Choose your favourite output file format for further work, and download, when the analyses are done."
"www/intro.html","www/intro_sw.html"
"<p>The <em><strong>FreesearchR</strong></em> app only stores data for analyses, but please only use with sensitive data when running locally. <a href='https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine'>Read more here</a></p>","<p>The <em><strong>FreesearchR</strong></em> app only stores data for analyses, but please only use with sensitive data when running locally. <a href='https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine'>Read more here</a></p>"
"Overview and filter","Overview and filter"
"Overview and filtering","Overview and filtering"
"Below you find a summary table for quick insigths, and on the right you can visualise data classes, browse data and apply different data filters.","Below you find a summary table for quick insigths, and on the right you can visualise data classes, browse data and apply different data filters."
"Visual overview","Visual overview"
"Browse data","Browse data"
"Filter data types","Filter data types"
"Filter observations","Filter observations"
"Apply filter on observation","Apply filter on observation"
"Edit and create data","Edit and create data"
"Subset, rename and convert variables","Subset, rename and convert variables"
"Below, are several options for simple data manipulation like update variables by renaming, creating new labels (for nicer tables in the report) and changing variable classes (numeric, factor/categorical etc.).","Below, are several options for simple data manipulation like update variables by renaming, creating new labels (for nicer tables in the report) and changing variable classes (numeric, factor/categorical etc.)."
"There are more advanced options to modify factor/categorical variables as well as create new factor from a continous variable or new variables with R code. At the bottom you can restore the original data.","There are more advanced options to modify factor/categorical variables as well as create new factor from a continous variable or new variables with R code. At the bottom you can restore the original data."
"Please note that data modifications are applied before any filtering.","Please note that data modifications are applied before any filtering."
"Advanced data manipulation","Advanced data manipulation"
"Below options allow more advanced varaible manipulations.","Below options allow more advanced varaible manipulations."
"Reorder factor levels","Reorder factor levels"
"Reorder the levels of factor/categorical variables.","Reorder the levels of factor/categorical variables."
"New factor","New factor"
"Create factor/categorical variable from a continous variable (number/date/time).","Create factor/categorical variable from a continous variable (number/date/time)."
"New variable","New variable"
"Create a new variable based on an R-expression.","Create a new variable based on an R-expression."
"Compare modified data to original","Compare modified data to original"
"Raw print of the original vs the modified data.","Raw print of the original vs the modified data."
"Original data:","Original data:"
"Modified data:","Modified data:"
"New column name:","New column name:"
"Group calculation by:","Group calculation by:"
"Enter an expression to define new column:","Enter an expression to define new column:"
"Click on a column name to add it to the expression:","Click on a column name to add it to the expression:"
"Create column","Create column"
"Choose a name for the column to be created or modified,","Choose a name for the column to be created or modified,"
"then enter an expression before clicking on the button above to validate or on","then enter an expression before clicking on the button above to validate or on"
"to delete it.","to delete it."
"New column name cannot be empty","New column name cannot be empty"
"Create a new column","Create a new column"
"Some operations are not allowed","Some operations are not allowed"
"Column added!","Column added!"
"Unique values:","Unique values:"
"Variable to cut:","Variable to cut:"
"Number of breaks:","Number of breaks:"
"Close intervals on the right","Close intervals on the right"
"Include lowest value","Include lowest value"
"Create factor variable","Create factor variable"
"Fixed breaks:","Fixed breaks:"
"Method:","Method:"
"Convert Numeric to Factor","Convert Numeric to Factor"
"Unique:","Unique:"
"Missing:","Missing:"
"Most Common:","Most Common:"
"Min:","Min:"
"Mean:","Mean:"
"Max:","Max:"
"Decimal separator:","Decimal separator:"
"First five rows are shown below:","First five rows are shown below:"
"Imported data","Imported data"
"www/intro.md","www/intro.md"
"Choose your data","Choose your data"
"Upload a file, get data directly from REDCap or use local or sample data.","Upload a file, get data directly from REDCap or use local or sample data."
"Factor variable to reorder:","Factor variable to reorder:"
"Sort by levels","Sort by levels"
"Sort by count","Sort by count"
"Create a new variable (otherwise replaces the one selected)","Create a new variable (otherwise replaces the one selected)"
"Update factor variable","Update factor variable"
"Sort count","Sort count"
"Levels","Levels"
"Count","Count"
"Update levels of a factor","Update levels of a factor"
"Update & select variables","Update & select variables"
"Date format:","Date format:"
"Date to use as origin to convert date/datetime:","Date to use as origin to convert date/datetime:"
"Apply changes","Apply changes"
"No data to display.","No data to display."
"Data successfully updated!","Data successfully updated!"
"You removed {p_out} % of observations.","You removed {p_out} % of observations."
"You removed {p_out} % of variables.","You removed {p_out} % of variables."
"You can import {file_extensions_text} files","You can import {file_extensions_text} files"
"You can choose between these file types:","You can choose between these file types:"
"Rows to skip before reading data:","Rows to skip before reading data:"
"Missing values character(s):","Missing values character(s):"
"if several use a comma (',') to separate them","if several use a comma (',') to separate them"
"Encoding:","Encoding:"
"Upload a file:","Upload a file:"
"Browse...","Browse..."
"Select sheet to import:","Select sheet to import:"
"No file selected.","No file selected."
"Evaluate","Evaluate"
"Visuals","Visuals"
"Regression","Regression"
"Download","Download"
"{data_text} has {n} observations and {n_var} variables, with {n_complete} ({p_complete} %) complete cases.","{data_text} has {n} observations and {n_var} variables, with {n_complete} ({p_complete} %) complete cases."
"Prepare","Prepare"
"At 0, only complete variables are included; at 100, all variables are included.","At 0, only complete variables are included; at 100, all variables are included."
"The following variable pairs are highly correlated: {sentence_paste(.x,and_str)}.\nConsider excluding one {more}from the dataset to ensure variables are independent.","The following variable pairs are highly correlated: {sentence_paste(.x,and_str)}.\nConsider excluding one {more}from the dataset to ensure variables are independent."
"No variables have a correlation measure above the threshold.","No variables have a correlation measure above the threshold."
"and","and"
"from each pair","from each pair"
"Only non-text variables are available for plotting. Go the ""Data"" to reclass data to plot.","Only non-text variables are available for plotting. Go the ""Data"" to reclass data to plot."
"Plot","Plot"
"Adjust settings, then press ""Plot"".","Adjust settings, then press ""Plot""."
"Plot height (mm)","Plot height (mm)"
"Plot width (mm)","Plot width (mm)"
"File format","File format"
"Download plot","Download plot"
"Select variable","Select variable"
"Response variable","Response variable"
"Plot type","Plot type"
"Please select","Please select"
"Additional variables","Additional variables"
"Secondary variable","Secondary variable"
"No variable","No variable"
"Grouping variable","Grouping variable"
"No stratification","No stratification"
"Drawing the plot. Hold tight for a moment..","Drawing the plot. Hold tight for a moment.."
"#Plotting\n","#Plotting\n"
"Drawing the plot. Hold on for a moment..","Drawing the plot. Hold on for a moment.."
"Stacked horizontal bars","Stacked horizontal bars"
"A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars","A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars"
"Violin plot","Violin plot"
"A modern alternative to the classic boxplot to visualise data distribution","A modern alternative to the classic boxplot to visualise data distribution"
"Sankey plot","Sankey plot"
"A way of visualising change between groups","A way of visualising change between groups"
"Scatter plot","Scatter plot"
"A classic way of showing the association between to variables","A classic way of showing the association between to variables"
"Box plot","Box plot"
"A classic way to plot data distribution by groups","A classic way to plot data distribution by groups"
"Euler diagram","Euler diagram"
"Generate area-proportional Euler diagrams to display set relationships","Generate area-proportional Euler diagrams to display set relationships"
1 en sw
2 Hello Habari
3 Get started Get started
4 File upload File upload
5 REDCap server export REDCap server export
6 Local or sample data Local or sample data
7 Please be mindfull handling sensitive data Please be mindfull handling sensitive data
8 The ***FreesearchR*** app only stores data for analyses, but please only use with sensitive data when running locally. [Read more here](https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine). The ***FreesearchR*** app only stores data for analyses, but please only use with sensitive data when running locally. [Read more here](https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine).
9 Quick overview Quick overview
10 Select variables for final import Select variables for final import
11 Exclude incomplete variables: Exclude incomplete variables:
12 Manual selection: Manual selection:
13 Let's begin! Let's begin!
14 Analysis validation Analysis validation
15 Report Report
16 Choose your favourite output file format for further work, and download, when the analyses are done. Choose your favourite output file format for further work, and download, when the analyses are done.
17 www/intro.html www/intro_sw.html
18 <p>The <em><strong>FreesearchR</strong></em> app only stores data for analyses, but please only use with sensitive data when running locally. <a href='https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine'>Read more here</a></p> <p>The <em><strong>FreesearchR</strong></em> app only stores data for analyses, but please only use with sensitive data when running locally. <a href='https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine'>Read more here</a></p>
19 Overview and filter Overview and filter
20 Overview and filtering Overview and filtering
21 Below you find a summary table for quick insigths, and on the right you can visualise data classes, browse data and apply different data filters. Below you find a summary table for quick insigths, and on the right you can visualise data classes, browse data and apply different data filters.
22 Visual overview Visual overview
23 Browse data Browse data
24 Filter data types Filter data types
25 Filter observations Filter observations
26 Apply filter on observation Apply filter on observation
27 Edit and create data Edit and create data
28 Subset, rename and convert variables Subset, rename and convert variables
29 Below, are several options for simple data manipulation like update variables by renaming, creating new labels (for nicer tables in the report) and changing variable classes (numeric, factor/categorical etc.). Below, are several options for simple data manipulation like update variables by renaming, creating new labels (for nicer tables in the report) and changing variable classes (numeric, factor/categorical etc.).
30 There are more advanced options to modify factor/categorical variables as well as create new factor from a continous variable or new variables with R code. At the bottom you can restore the original data. There are more advanced options to modify factor/categorical variables as well as create new factor from a continous variable or new variables with R code. At the bottom you can restore the original data.
31 Please note that data modifications are applied before any filtering. Please note that data modifications are applied before any filtering.
32 Advanced data manipulation Advanced data manipulation
33 Below options allow more advanced varaible manipulations. Below options allow more advanced varaible manipulations.
34 Reorder factor levels Reorder factor levels
35 Reorder the levels of factor/categorical variables. Reorder the levels of factor/categorical variables.
36 New factor New factor
37 Create factor/categorical variable from a continous variable (number/date/time). Create factor/categorical variable from a continous variable (number/date/time).
38 New variable New variable
39 Create a new variable based on an R-expression. Create a new variable based on an R-expression.
40 Compare modified data to original Compare modified data to original
41 Raw print of the original vs the modified data. Raw print of the original vs the modified data.
42 Original data: Original data:
43 Modified data: Modified data:
44 New column name: New column name:
45 Group calculation by: Group calculation by:
46 Enter an expression to define new column: Enter an expression to define new column:
47 Click on a column name to add it to the expression: Click on a column name to add it to the expression:
48 Create column Create column
49 Choose a name for the column to be created or modified, Choose a name for the column to be created or modified,
50 then enter an expression before clicking on the button above to validate or on then enter an expression before clicking on the button above to validate or on
51 to delete it. to delete it.
52 New column name cannot be empty New column name cannot be empty
53 Create a new column Create a new column
54 Some operations are not allowed Some operations are not allowed
55 Column added! Column added!
56 Unique values: Unique values:
57 Variable to cut: Variable to cut:
58 Number of breaks: Number of breaks:
59 Close intervals on the right Close intervals on the right
60 Include lowest value Include lowest value
61 Create factor variable Create factor variable
62 Fixed breaks: Fixed breaks:
63 Method: Method:
64 Convert Numeric to Factor Convert Numeric to Factor
65 Unique: Unique:
66 Missing: Missing:
67 Most Common: Most Common:
68 Min: Min:
69 Mean: Mean:
70 Max: Max:
71 Decimal separator: Decimal separator:
72 First five rows are shown below: First five rows are shown below:
73 Imported data Imported data
74 www/intro.md www/intro.md
75 Choose your data Choose your data
76 Upload a file, get data directly from REDCap or use local or sample data. Upload a file, get data directly from REDCap or use local or sample data.
77 Factor variable to reorder: Factor variable to reorder:
78 Sort by levels Sort by levels
79 Sort by count Sort by count
80 Create a new variable (otherwise replaces the one selected) Create a new variable (otherwise replaces the one selected)
81 Update factor variable Update factor variable
82 Sort count Sort count
83 Levels Levels
84 Count Count
85 Update levels of a factor Update levels of a factor
86 Update & select variables Update & select variables
87 Date format: Date format:
88 Date to use as origin to convert date/datetime: Date to use as origin to convert date/datetime:
89 Apply changes Apply changes
90 No data to display. No data to display.
91 Data successfully updated! Data successfully updated!
92 You removed {p_out} % of observations. You removed {p_out} % of observations.
93 You removed {p_out} % of variables. You removed {p_out} % of variables.
94 You can import {file_extensions_text} files You can import {file_extensions_text} files
95 You can choose between these file types: You can choose between these file types:
96 Rows to skip before reading data: Rows to skip before reading data:
97 Missing values character(s): Missing values character(s):
98 if several use a comma (',') to separate them if several use a comma (',') to separate them
99 Encoding: Encoding:
100 Upload a file: Upload a file:
101 Browse... Browse...
102 Select sheet to import: Select sheet to import:
103 No file selected. No file selected.
104 Evaluate Evaluate
105 Visuals Visuals
106 Regression Regression
107 Download Download
108 {data_text} has {n} observations and {n_var} variables, with {n_complete} ({p_complete} %) complete cases. {data_text} has {n} observations and {n_var} variables, with {n_complete} ({p_complete} %) complete cases.
109 Prepare Prepare
110 At 0, only complete variables are included; at 100, all variables are included. At 0, only complete variables are included; at 100, all variables are included.
111 The following variable pairs are highly correlated: {sentence_paste(.x,and_str)}.\nConsider excluding one {more}from the dataset to ensure variables are independent. The following variable pairs are highly correlated: {sentence_paste(.x,and_str)}.\nConsider excluding one {more}from the dataset to ensure variables are independent.
112 No variables have a correlation measure above the threshold. No variables have a correlation measure above the threshold.
113 and and
114 from each pair from each pair
115 Only non-text variables are available for plotting. Go the "Data" to reclass data to plot. Only non-text variables are available for plotting. Go the "Data" to reclass data to plot.
116 Plot Plot
117 Adjust settings, then press "Plot". Adjust settings, then press "Plot".
118 Plot height (mm) Plot height (mm)
119 Plot width (mm) Plot width (mm)
120 File format File format
121 Download plot Download plot
122 Select variable Select variable
123 Response variable Response variable
124 Plot type Plot type
125 Please select Please select
126 Additional variables Additional variables
127 Secondary variable Secondary variable
128 No variable No variable
129 Grouping variable Grouping variable
130 No stratification No stratification
131 Drawing the plot. Hold tight for a moment.. Drawing the plot. Hold tight for a moment..
132 #Plotting\n #Plotting\n
133 Drawing the plot. Hold on for a moment.. Drawing the plot. Hold on for a moment..
134 Stacked horizontal bars Stacked horizontal bars
135 A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars
136 Violin plot Violin plot
137 A modern alternative to the classic boxplot to visualise data distribution A modern alternative to the classic boxplot to visualise data distribution
138 Sankey plot Sankey plot
139 A way of visualising change between groups A way of visualising change between groups
140 Scatter plot Scatter plot
141 A classic way of showing the association between to variables A classic way of showing the association between to variables
142 Box plot Box plot
143 A classic way to plot data distribution by groups A classic way to plot data distribution by groups
144 Euler diagram Euler diagram
145 Generate area-proportional Euler diagrams to display set relationships Generate area-proportional Euler diagrams to display set relationships

View file

@ -4,7 +4,7 @@
\alias{align_axes}
\title{Aligns axes between plots}
\usage{
align_axes(...)
align_axes(..., x.axis = TRUE, y.axis = TRUE)
}
\arguments{
\item{...}{ggplot2 objects or list of ggplot2 objects}

View file

@ -21,7 +21,7 @@ list_allowed_operations()
modal_create_column(
id,
title = i18n("Create a new column"),
title = i18n$t("Create a new column"),
easyClose = TRUE,
size = "l",
footer = NULL
@ -29,7 +29,7 @@ modal_create_column(
winbox_create_column(
id,
title = i18n("Create a new column"),
title = i18n$t("Create a new column"),
options = shinyWidgets::wbOptions(),
controls = shinyWidgets::wbControls()
)

View file

@ -13,7 +13,7 @@ cut_variable_server(id, data_r = reactive(NULL))
modal_cut_variable(
id,
title = datamods:::i18n("Convert Numeric to Factor"),
title = i18n$t("Convert Numeric to Factor"),
easyClose = TRUE,
size = "l",
footer = NULL

View file

@ -8,18 +8,34 @@
\usage{
data_correlations_ui(id, ...)
data_correlations_server(id, data, include.class = NULL, cutoff = 0.7, ...)
data_correlations_server(
id,
data,
include.class = NULL,
cutoff = 0.7,
warning_str =
i18n$t("The following variable pairs are highly correlated: {sentence_paste(.x,and_str)}.\\nConsider excluding one {more}from the dataset to ensure variables are independent."),
warning_no_str = i18n$t("No variables have a correlation measure above the threshold."),
and_str = i18n$t("and"),
...
)
}
\arguments{
\item{id}{Module id. (Use 'ns("id")')}
\item{id}{id}
\item{...}{arguments passed to toastui::datagrid}
\item{data}{data}
\item{color.main}{main color}
\item{include.class}{character vector of classes to include. Default is NULL}
\item{color.sec}{secondary color}
\item{cutoff}{numeric}
\item{warning_str}{Character string. Exposed to allow dynamic translations}
\item{warning_no_str}{Character string. Exposed to allow dynamic translations}
\item{and_strCharacter}{string. Exposed to allow dynamic translations}
}
\value{
Shiny ui module

View file

@ -111,6 +111,7 @@ mtcars |> plot_box_single("mpg")
mtcars |> plot_box_single("mpg","cyl")
gtsummary::trial |> plot_box_single("age","trt")
mtcars |> plot_hbars(pri = "carb", sec = "cyl")
mtcars |> plot_hbars(pri = "carb", sec = "cyl", ter="am")
mtcars |> plot_hbars(pri = "carb", sec = NULL)
mtcars |>
default_parsing() |>

21
man/dim_change_call.Rd Normal file
View file

@ -0,0 +1,21 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/validation.R
\name{dim_change_call}
\alias{dim_change_call}
\title{Dimensions validation}
\usage{
dim_change_call(before, after, fun)
}
\arguments{
\item{before}{data before}
\item{after}{data after}
\item{fun}{dimension function. ncol or nrow}
}
\value{
data.frame
}
\description{
Dimensions validation
}

48
man/make_validation.Rd Normal file
View file

@ -0,0 +1,48 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/validation.R
\name{make_validation}
\alias{make_validation}
\title{Create validation data.frame}
\usage{
make_validation(ls, ...)
}
\arguments{
\item{ls}{validation list}
\item{...}{magic dots}
}
\value{
data.frame
}
\description{
Create validation data.frame
}
\examples{
i18n <- shiny.i18n::Translator$new(translation_csvs_path = here::here("inst/translations"))
i18n$set_translation_language("en")
df_original <- mtcars
df_original[1,2:4] <- NA
df_obs <- df_original |> dplyr::filter(carb==4)
df_vars <- df_original[1:7]
val <- purrr::map2(
.x = validation_lib(),
.y = list(
list(x = df_original, y = df_obs),
list(x = df_original, y = df_vars),
list(x=df_original)),
make_validation
)
val |> make_validation_alerts()
val2 <- purrr::map2(
.x = validation_lib()[2],
.y = list(list(x = mtcars, y = mtcars[0])),
make_validation
)
val2 |> make_validation_alerts()
val3 <- make_validation(
ls = validation_lib()[[2]],
list(x = mtcars, y = mtcars[0])
)
}

View file

@ -0,0 +1,14 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/validation.R
\name{make_validation_alerts}
\alias{make_validation_alerts}
\title{Create alert from validation data.frame}
\usage{
make_validation_alerts(data)
}
\arguments{
\item{data}{}
}
\description{
Create alert from validation data.frame
}

22
man/missings_validate.Rd Normal file
View file

@ -0,0 +1,22 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/validation.R
\name{missings_validate}
\alias{missings_validate}
\title{Validate function of missingness in data}
\usage{
missings_validate(data)
}
\arguments{
\item{data}{data set}
}
\value{
data.frame
}
\description{
Validate function of missingness in data
}
\examples{
df <- mtcars
df[1,2:4] <- NA
missings_validate(df)
}

View file

@ -0,0 +1,19 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/validation.R
\name{obs_filter_validate}
\alias{obs_filter_validate}
\title{Observations filter test wrapper}
\usage{
obs_filter_validate(before, after)
}
\arguments{
\item{before}{data before}
\item{after}{data after}
}
\value{
vector
}
\description{
Observations filter test wrapper
}

View file

@ -31,4 +31,5 @@ data.frame(
D = sample(c(TRUE, FALSE, FALSE, FALSE), 50, TRUE)
) |> plot_euler("A", c("B", "C"), "D", seed = 4)
mtcars |> plot_euler("vs", "am", seed = 1)
mtcars |> plot_euler("vs", "am", "cyl", seed = 1)
}

17
man/ui_elements.Rd Normal file
View file

@ -0,0 +1,17 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ui_elements.R
\name{ui_elements}
\alias{ui_elements}
\title{FreesearchR UI elements list}
\usage{
ui_elements(selection)
}
\arguments{
\item{selection}{specify element to output}
}
\value{
Shinu UI elements
}
\description{
FreesearchR UI elements list
}

View file

@ -14,7 +14,7 @@ update_factor_server(id, data_r = reactive(NULL))
modal_update_factor(
id,
title = i18n("Update levels of a factor"),
title = i18n$t("Update levels of a factor"),
easyClose = TRUE,
size = "l",
footer = NULL
@ -22,7 +22,7 @@ modal_update_factor(
winbox_update_factor(
id,
title = i18n("Update levels of a factor"),
title = i18n$t("Update levels of a factor"),
options = shinyWidgets::wbOptions(),
controls = shinyWidgets::wbControls()
)

169
man/validation.Rd Normal file
View file

@ -0,0 +1,169 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/validation.R
\name{validation_ui}
\alias{validation_ui}
\alias{validation_server}
\title{Validation module}
\usage{
validation_ui(id, max_height = NULL, ...)
validation_server(id, data)
}
\arguments{
\item{id}{Module's ID.}
\item{max_height}{Maximum height for validation results element, useful if you have many rules.}
\item{...}{Arguments passed to \code{actionButton} or \code{uiOutput} depending on display mode,
you cannot use \code{inputId}/\code{outputId}, \code{label} or \code{icon} (button only).}
\item{data}{a \code{reactive} function returning a \code{data.frame}.}
}
\value{
\itemize{
\item UI: HTML tags that can be included in shiny's UI
\item Server: a \code{list} with two slots:
\itemize{
\item \strong{status}: a \code{reactive} function returning the best status available between \code{"OK"}, \code{"Failed"} or \code{"Error"}.
\item \strong{details}: a \code{reactive} function returning a \code{list} with validation details.
}
}
}
\description{
Check that a dataset respect some validation expectations.
}
\examples{
#' Data and analyses validation demo
#'
#' @returns
#' @export
#'
#' @examples
#' \dontrun{
#' validation_demo_app()
#' }
validation_demo_app <- function() {
ui <- shiny::fluidPage(
shiny::tags$h2("Validation"),
IDEAFilter::IDEAFilter_ui("data_filter"),
shiny::br(),
DT::DTOutput("data_final"),
shiny::br(),
validation_ui("validation_demo_2")
)
server <- function(input, output, session) {
rv <- shiny::reactiveValues(
data_original = shiny::reactive(mtcars),
data_filtered = NULL
)
rv_validation <- shiny::reactiveValues(
obs_filter = NULL,
vars_filter = NULL
)
data_filter <- IDEAFilter::IDEAFilter(
id = "data_filter",
data = mtcars,
verbose = TRUE
)
shiny::observeEvent(
data_filter(),
{
rv$data_filtered <- data_filter()
}
)
output$data_final <- DT::renderDT(
data_filter()
)
shiny::observeEvent(
list(
data_filter()
),
{
to_make_validation <- data_filter()
## Validation
if (!is.null(to_make_validation)) {
validation <-
make_validation(
ls = validation_lib("obs_filter"),
list(
x = mtcars,
y = to_make_validation
)
)
rv_validation$vars_filter <- validation
validation_server(id = "validation_demo_2", data = rv_validation$vars_filter)
}
}
)
# shiny::observeEvent(
# list(
# shiny::reactive(rv_validation$vars_filter)(),
# data_filter()
# ),
# {
# # browser()
# # to_make_alert <- shiny::isolate(rv_validation$vars_filter)
# to_make_alert <- shiny::reactive(rv_validation$vars_filter)()
# if (!is.null(rv_validation$vars_filter)) {
# validation_server(id = "validation_demo_2", data = to_make_alert)
# }
# }
# )
}
shiny::shinyApp(ui, server)
}
#' Title
#'
#' @returns
#' @export
#'
#' @examples
#' validation_nr_demo_app()
validation_nr_demo_app <- function() {
ui <- shiny::fluidPage(
shiny::tags$h2("Validation"),
shiny::br(),
validation_ui("validation_demo_1", max_height = "30px"),
shiny::br(),
validation_ui("validation_demo_2")
)
server <- function(input, output, session) {
df_original <- mtcars
df_obs <- mtcars |> dplyr::filter(mpg > 20)
df_vars <- df_obs[1:6]
val1 <- purrr::map2(
.x = validation_lib()[1],
.y = list(list(x = df_original, y = df_obs)),
make_validation
)
val2 <- make_validation(
ls = validation_lib()[[2]],
list(x = df_original, y = df_vars)
)
validation_server(id = "validation_demo_1", data = val1)
validation_server(id = "validation_demo_2", data = val2)
}
shiny::shinyApp(ui, server)
}
}

21
man/validation_lib.Rd Normal file
View file

@ -0,0 +1,21 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/validation.R
\name{validation_lib}
\alias{validation_lib}
\title{Validation library}
\usage{
validation_lib(name = NULL)
}
\arguments{
\item{name}{Index name}
}
\value{
list
}
\description{
Validation library
}
\examples{
validation_lib()
validation_lib("missings")
}

View file

@ -0,0 +1,23 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/validation.R
\name{vars_filter_validate}
\alias{vars_filter_validate}
\title{Variable filter test wrapper}
\usage{
vars_filter_validate(before, after)
}
\arguments{
\item{before}{data before}
\item{after}{data after}
}
\value{
vector
}
\description{
Variable filter test wrapper
}
\examples{
vars_filter_validate(mtcars, mtcars[1:6])
vars_filter_validate(mtcars, mtcars[0])
}

View file

@ -9,6 +9,9 @@ wrap_plot_list(
tag_levels = NULL,
title = NULL,
axis.font.family = NULL,
guides = "collect",
axes = "collect",
axis_titles = "collect",
...
)
}
@ -19,7 +22,13 @@ wrap_plot_list(
\item{title}{panel title}
\item{...}{ignored for argument overflow}
\item{guides}{passed to patchwork::wrap_plots()}
\item{axes}{passed to patchwork::wrap_plots()}
\item{axis_titles}{passed to patchwork::wrap_plots()}
\item{...}{passed to patchwork::wrap_plots()}
}
\value{
list of ggplot2 objects

680
renv.lock

File diff suppressed because one or more lines are too long

View file

@ -2,7 +2,7 @@
local({
# the requested version of renv
version <- "1.1.4"
version <- "1.1.5"
attr(version, "sha") <- NULL
# the project directory

View file

@ -14,15 +14,11 @@ library(FreesearchR)
# Getting started with ***FreesearchR***
Below is a simple walk-trough and basic instructions for the functions on the FreesearchR app.
Below is a simple walk-trough and basic descriptions on the different features of the ***FreesearchR*** app.
## Launching
The easiest way to get started is to launch [the hosted version of the app on shinyapps.io (click this link)](https://agdamsbo.shinyapps.io/freesearcheR/).
Additionally you have the option to run the app locally with access to any data in your current working environment.
To do this, open *R* (or RStudio or similar), and run the following code to install the latest version of ***FreesearchR*** and launch the app:
The easiest way to get started is to launch [the onlie version of the app (click this link)](https://app.freesearchr.org/). Please be aware not to upload sensitive data in this version as data security can not be guaranteed in this online environment. The app can easily be run from *R* on your own computer by running the code below ([read more on running locally here](https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine)):
```{r}
require("pak")
@ -31,19 +27,17 @@ library(FreesearchR)
FreesearchR::launch_FreesearchR()
```
As a small note, a standalone Windows app version is on the drawing board as well, but no time frame is available.
As a small note, a standalone Windows app version is on the drawing board as well, but no time frame is currently available.
## Importing data
## Get started
Once in the app and in the "**Import**", you have three options available for importing data: file upload, REDCap server export and local or sample data.
Once in the app, get started by loading your data. You have three options available for importing data: file upload, REDCap server export and local or sample data.
After choosing a data source, you can set a threshold to filter data be completenes and further manually specify variables to include for analyses.
After choosing a data source nad importing data, you can preview the basic data structure and missing observations, set a threshold to filter data by completeness and further manually specify variables to include for analyses.
### File upload
Currently several data file formats are supported for easy import (csv, txt, xls(x), ods, rds, dta). If importing workbooks (xls(x) or ods), you are prompted to specify sheet(s) to import. If choosing multiple sheets, these are automatically merged by common variable(s), so please make sure that key variables are correctly named identically.
A notification is posted with error or success. After succesfull import data can be previewed directly by clicking "click to see data" in the notification.
Several data file formats are supported for easy import (csv, txt, xls(x), ods, rds, dta). If importing workbooks (xls(x) or ods), you are prompted to specify sheet(s) to import. If choosing multiple sheets, these are automatically merged by common variable(s), so please make sure that key/ID variables are correctly named identically.
### REDCap server export
@ -51,7 +45,7 @@ Export data directly from a REDCap server. You need to first generate an API-tok
Please don't store the API-key on your device unless encrypted or in a keyring, as this may compromise data safety. Log in to your REDCap server and retrieve the token when needed.
Type the correct webaddress of your REDCap server.
Type the correct web address of your REDCap server.
The module will validate the information and you can click "Connect".
@ -59,11 +53,11 @@ This will unfold options to preview your data dictionary (the main database meta
### Local or sample data
When opening the online hosted app, this is mainly for testing purposes. When running the app locally from *R* on your own computer, you will find all data.frames in the current environment here. This extends the possible uses of this app to allow for quick and easy data insights and code generation for basic plotting to fine tune.
When opening the online hosted app, you can load some sample data to try out the app. When running the app locally from *R* on your own computer, you will find all data frames loaded in your environment here. This extends the possible uses of this app to allow for quick and easy data insights and code generation.
## Data
## Prepare
This is the panel to get a good overview of your data, check data is classed and formatted correctly, perform simple modifications and filter data.
This is the panel to prepare data for evaluation and analyses and get a good overview of your data, check data is classed and formatted correctly, perform simple modifications and filter data.
### Summary
@ -147,11 +141,13 @@ c("continuous", "dichotomous", "categorical") |>
Generate simple regression models and get the results in a nice table. This will also be included in the exported report.
This will generate a combined table with both univariate regression model results for each included variable and a multivariate model with all variables included for explorative analyses.
### Plots
Plot the coefficients from the regression models in a forest plot. Choose which model(s) to include.
### Checks
### Model checks
Check model assumptions visually. Supported checks can be chosen.

View file

@ -23,4 +23,4 @@ library(FreesearchR)
### Further reading
The authors behind the [{finalfit}-package]() have shared a very comprehensive article on what to do and think about missing observations in your data. Please [have a look here]().
The authors behind the [{finalfit}-package](https://finalfit.org/index.html) have shared a very comprehensive article on what to do and think about missing observations in your data. Please [have a look here](https://finalfit.org/articles/missing.html).