Compare commits

..

No commits in common. "20ae86a346309d3b282ff0b7d64bc7ea223df089" and "a59b980a950ff21429a599da28a943c43ad5f4d2" have entirely different histories.

11 changed files with 17 additions and 23 deletions

View file

@ -2,9 +2,6 @@
- *NEW*: Added a variables type filter to easily exclude unwanted types. This also includes having data type rather than data class in the summary table. Will evaluate. Types are a simpler, more practical version of the *R* data class to easy interpretation.
- *NEW*: A logo is here! It should emphasize the underlying reliance on *R* while also inspire to explore.
- *IMPROVED*: docs are updated and much more comprehensive. They will be continuously updated.
# FreesearchR 25.4.2

Binary file not shown.

View file

@ -1,4 +1,4 @@
# FreesearchR <a href="https://agdamsbo.github.io/FreesearchR/"><img src="man/figures/logo.png" align="right" height="70" alt="FreesearchR website" /></a>
# FreesearchR <img style="float: right;" src="logo-text-white-250.png">
<!-- badges: start -->
[![Lifecycle: experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://lifecycle.r-lib.org/articles/stages.html#experimental)
@ -43,12 +43,10 @@ Please note that the ***FreesearchR*** project is released with a [Contributor C
Like any other project, this project was never possible without the great work of others. These are some of the sources and packages I have used:
- The ***FreesearchR*** app is build with [Shiny](https://shiny.posit.co/) and based on [*R*](https://www.r-project.org/).
- The ***FreesearchR*** app is build with [Shiny](https://shiny.posit.co/) and based on (*R*)[https://www.r-project.org/].
- [gtsummary](https://www.danieldsjoberg.com/gtsummary/): superb and flexible way to create publication-ready analytical and summary tables.
- [dreamRs](https://github.com/dreamRs): maintainers of a broad selection of great extensions and tools for [Shiny](https://shiny.posit.co/).
- [easystats](https://easystats.github.io/easystats/): the [`performance::check_model()`](https://easystats.github.io/performance/articles/check_model.html) function was central in sparking the idea to create a data analysis tool.
This project was all written by a human and not by any AI-based tools.

View file

@ -40,13 +40,12 @@
|class |7.3-23 |2025-01-01 |CRAN (R 4.4.1) |
|classInt |0.4-11 |2025-01-08 |CRAN (R 4.4.1) |
|cli |3.6.4 |2025-02-13 |CRAN (R 4.4.1) |
|clipr |0.8.0 |2022-02-22 |CRAN (R 4.4.1) |
|colorspace |2.1-1 |2024-07-26 |CRAN (R 4.4.1) |
|commonmark |1.9.5 |2025-03-17 |CRAN (R 4.4.1) |
|correlation |0.8.7 |2025-03-03 |CRAN (R 4.4.1) |
|crayon |1.5.3 |2024-06-20 |CRAN (R 4.4.1) |
|credentials |2.0.2 |2024-10-04 |CRAN (R 4.4.1) |
|crosstalk |1.2.1 |2023-11-23 |CRAN (R 4.4.0) |
|curl |6.2.2 |2025-03-24 |CRAN (R 4.4.1) |
|data.table |1.17.0 |2025-02-22 |CRAN (R 4.4.1) |
|datamods |1.5.3 |2024-10-02 |CRAN (R 4.4.1) |
|datawizard |1.0.2 |2025-03-24 |CRAN (R 4.4.1) |
@ -66,8 +65,10 @@
|fastmap |1.2.0 |2024-05-15 |CRAN (R 4.4.1) |
|fontawesome |0.5.3 |2024-11-16 |CRAN (R 4.4.1) |
|forcats |1.0.0 |2023-01-29 |CRAN (R 4.4.0) |
|FreesearchR |25.4.3 |NA |NA |
|fs |1.6.6 |2025-04-12 |CRAN (R 4.4.1) |
|generics |0.1.3 |2022-07-05 |CRAN (R 4.4.1) |
|gert |2.1.5 |2025-03-25 |CRAN (R 4.4.1) |
|ggplot2 |3.5.2 |2025-04-09 |CRAN (R 4.4.1) |
|glue |1.8.0 |2024-09-30 |CRAN (R 4.4.1) |
|gt |1.0.0 |2025-04-05 |CRAN (R 4.4.1) |
@ -84,13 +85,11 @@
|jquerylib |0.1.4 |2021-04-26 |CRAN (R 4.4.0) |
|jsonlite |2.0.0 |2025-03-27 |CRAN (R 4.4.1) |
|KernSmooth |2.23-26 |2025-01-01 |CRAN (R 4.4.1) |
|keyring |1.3.2 |2023-12-11 |CRAN (R 4.4.0) |
|knitr |1.50 |2025-03-16 |CRAN (R 4.4.1) |
|later |1.4.2 |2025-04-08 |CRAN (R 4.4.1) |
|lattice |0.22-7 |2025-04-02 |CRAN (R 4.4.1) |
|lifecycle |1.0.4 |2023-11-07 |CRAN (R 4.4.1) |
|lme4 |1.1-37 |2025-03-26 |CRAN (R 4.4.1) |
|magick |2.8.6 |NA |NA |
|magrittr |2.0.3 |2022-03-30 |CRAN (R 4.4.1) |
|MASS |7.3-65 |2025-02-28 |CRAN (R 4.4.1) |
|Matrix |1.7-3 |2025-03-11 |CRAN (R 4.4.1) |
@ -104,7 +103,6 @@
|nloptr |2.2.1 |2025-03-17 |CRAN (R 4.4.1) |
|openssl |2.3.2 |2025-02-03 |CRAN (R 4.4.1) |
|openxlsx2 |1.14 |2025-03-20 |CRAN (R 4.4.1) |
|pak |0.8.0.2 |2025-04-08 |CRAN (R 4.4.1) |
|parameters |0.24.2 |2025-03-04 |CRAN (R 4.4.1) |
|patchwork |1.3.0 |2024-09-16 |CRAN (R 4.4.1) |
|performance |0.13.0 |2025-01-15 |CRAN (R 4.4.1) |
@ -112,7 +110,6 @@
|pillar |1.10.2 |2025-04-05 |CRAN (R 4.4.1) |
|pkgbuild |1.4.7 |2025-03-24 |CRAN (R 4.4.1) |
|pkgconfig |2.0.3 |2019-09-22 |CRAN (R 4.4.1) |
|pkgdown |2.1.1 |2024-09-17 |CRAN (R 4.4.1) |
|pkgload |1.4.0 |2024-06-28 |CRAN (R 4.4.0) |
|processx |3.8.6 |2025-02-21 |CRAN (R 4.4.1) |
|profvis |0.4.0 |2024-09-20 |CRAN (R 4.4.1) |
@ -149,6 +146,7 @@
|shinyTime |1.0.3 |2022-08-19 |CRAN (R 4.4.0) |
|shinyWidgets |0.9.0 |2025-02-21 |CRAN (R 4.4.1) |
|stringi |1.8.7 |2025-03-27 |CRAN (R 4.4.1) |
|sys |3.4.3 |2024-10-04 |CRAN (R 4.4.1) |
|tibble |3.2.1 |2023-03-20 |CRAN (R 4.4.0) |
|tidyr |1.3.1 |2024-01-24 |CRAN (R 4.4.1) |
|tidyselect |1.2.1 |2024-03-11 |CRAN (R 4.4.0) |
@ -158,6 +156,7 @@
|usethis |3.1.0 |2024-11-26 |CRAN (R 4.4.1) |
|vctrs |0.6.5 |2023-12-01 |CRAN (R 4.4.0) |
|vroom |1.6.5 |2023-12-05 |CRAN (R 4.4.0) |
|whisker |0.4.1 |2022-12-05 |CRAN (R 4.4.1) |
|withr |3.0.2 |2024-10-28 |CRAN (R 4.4.1) |
|writexl |1.5.4 |2025-04-15 |CRAN (R 4.4.1) |
|xfun |0.52 |2025-04-02 |CRAN (R 4.4.1) |

View file

@ -9018,7 +9018,7 @@ server <- function(input, output, session) {
rv$data_original <- temp_data |>
default_parsing()
rv$code$import_print <- list(
rv$code$import <- list(
rv$code$import,
rlang::expr(dplyr::select(dplyr::all_of(!!input$import_var))),
rlang::call2(.fn = "default_parsing", .ns = "FreesearchR")
@ -9304,7 +9304,7 @@ server <- function(input, output, session) {
# })
output$code_import <- shiny::renderUI({
prismCodeBlock(paste0("#Data import\n", rv$code$import_print))
prismCodeBlock(paste0("#Data import\n", rv$code$import))
})
output$code_data <- shiny::renderUI({

View file

@ -5,6 +5,6 @@ account: agdamsbo
server: shinyapps.io
hostUrl: https://api.shinyapps.io/v1
appId: 13611288
bundleId: 10164419
bundleId: 10156735
url: https://agdamsbo.shinyapps.io/freesearcheR/
version: 1

View file

@ -189,7 +189,7 @@ server <- function(input, output, session) {
rv$data_original <- temp_data |>
default_parsing()
rv$code$import_print <- list(
rv$code$import <- list(
rv$code$import,
rlang::expr(dplyr::select(dplyr::all_of(!!input$import_var))),
rlang::call2(.fn = "default_parsing", .ns = "FreesearchR")
@ -475,7 +475,7 @@ server <- function(input, output, session) {
# })
output$code_import <- shiny::renderUI({
prismCodeBlock(paste0("#Data import\n", rv$code$import_print))
prismCodeBlock(paste0("#Data import\n", rv$code$import))
})
output$code_data <- shiny::renderUI({

BIN
logo-text-white-250.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

View file

@ -69,13 +69,13 @@ This is the panel to get a good overview of your data, check data is classed and
Here, the data variables can be inspected with a simple visualisation and a few key measures. Also, data filtering is available at two levels:
- Data type filtering allows to filter by variable [data type](https://agdamsbo.github.io/FreesearchR/articles/data-types.html)
- Data type filtering allows to filter by variable [data type]()
- Observations level filtering allow to filter data by variable
### Modify
Re-class, rename, and relabel variables. Subset data, create new variables and reorder factor levels. Also, compare the modified dataset to the original and restore the original data.
## Evaluate
@ -111,7 +111,7 @@ c("continuous", "dichotomous", "categorical") |>
}) |>
dplyr::bind_rows() |>
# toastui::datagrid(filters=TRUE,theme="striped") |>
knitr::kable()
kableExtra::kable()
```
Export the plots directly from the sidebar with easily adjusted plot dimensions for your next publication.
@ -140,7 +140,7 @@ c("continuous", "dichotomous", "categorical") |>
}) |>
dplyr::bind_rows() |>
# toastui::datagrid(filters=TRUE,theme="striped") |>
knitr::kable()
kableExtra::kable()
```
### Table

View file

@ -28,7 +28,7 @@ data_types() |> purrr::imap(\(.x,.i){
dplyr::bind_cols("type"=.i,.x,.name_repair = "unique_quiet")
}) |> dplyr::bind_rows() |>
setNames(c("Data type","Description","Data classes included")) |>
knitr::kable()
kableExtra::kable()
```
Categorising data in this way makes sense when making choices on how to evaluate and analyse data. This is used throughout the ***FreesearchR*** app to simplify data handling.