mirror of
https://github.com/agdamsbo/FreesearchR.git
synced 2025-09-12 09:59:39 +02:00
Compare commits
7 commits
1b425b5a94
...
1bfad4ba4c
Author | SHA1 | Date | |
---|---|---|---|
1bfad4ba4c | |||
7df711424e | |||
2495da555a | |||
b945b6af33 | |||
184bce42c5 | |||
d664adc500 | |||
c69baaaac1 |
12 changed files with 404 additions and 170 deletions
|
@ -1 +1 @@
|
|||
app_version <- function()'250319_1327'
|
||||
app_version <- function()'250320_1310'
|
||||
|
|
|
@ -31,16 +31,18 @@ columnSelectInput <- function(inputId, label, data, selected = "", ...,
|
|||
{
|
||||
"name": "%s",
|
||||
"label": "%s",
|
||||
"dataclass": "%s",
|
||||
"datatype": "%s"
|
||||
}'),
|
||||
col,
|
||||
attr(datar()[[col]], "label") %||% "",
|
||||
IDEAFilter:::get_dataFilter_class(datar()[[col]])
|
||||
IDEAFilter:::get_dataFilter_class(datar()[[col]]),
|
||||
data_type(datar()[[col]])
|
||||
)
|
||||
}, col = names(datar()))
|
||||
|
||||
if (!"none" %in% names(datar())){
|
||||
labels <- c("none"=list(sprintf('\n {\n \"name\": \"none\",\n \"label\": \"%s\",\n \"datatype\": \"\"\n }',none_label)),labels)
|
||||
labels <- c("none"=list(sprintf('\n {\n \"name\": \"none\",\n \"label\": \"%s\",\n \"dataclass\": \"\",\n \"datatype\": \"\"\n }',none_label)),labels)
|
||||
choices <- setNames(names(labels), labels)
|
||||
choices <- choices[match(if (length(col_subsetr()) == 0 || isTRUE(col_subsetr() == "")) names(datar()) else col_subsetr(), choices)]
|
||||
} else {
|
||||
|
@ -62,10 +64,16 @@ columnSelectInput <- function(inputId, label, data, selected = "", ...,
|
|||
return '<div style=\"padding: 3px 12px\">' +
|
||||
'<div><strong>' +
|
||||
escape(item.data.name) + ' ' +
|
||||
'<span style=\"opacity: 0.3;\"><code style=\"color: black;\"> ' +
|
||||
'</strong>' +
|
||||
(item.data.dataclass != '' ?
|
||||
'<span style=\"opacity: 0.9;\"><code style=\"color: black;\"> ' +
|
||||
item.data.dataclass +
|
||||
'</code></span>' : '' ) + ' ' +
|
||||
(item.data.datatype != '' ?
|
||||
'<span style=\"opacity: 0.9;\"><code style=\"color: black;\"> ' +
|
||||
item.data.datatype +
|
||||
'</code></span>' +
|
||||
'</strong></div>' +
|
||||
'</code></span>' : '' ) +
|
||||
'</div>' +
|
||||
(item.data.label != '' ? '<div style=\"line-height: 1em;\"><small>' + escape(item.data.label) + '</small></div>' : '') +
|
||||
'</div>';
|
||||
},
|
||||
|
@ -84,7 +92,6 @@ columnSelectInput <- function(inputId, label, data, selected = "", ...,
|
|||
}
|
||||
|
||||
|
||||
|
||||
#' A selectizeInput customized for named vectors
|
||||
#'
|
||||
#' @param inputId passed to \code{\link[shiny]{selectizeInput}}
|
||||
|
|
|
@ -282,6 +282,8 @@ add_class_icon <- function(grid, column = "class") {
|
|||
shiny::icon("arrow-down-1-9")
|
||||
} else if (identical(x, "character")) {
|
||||
shiny::icon("arrow-down-a-z")
|
||||
} else if (identical(x, "logical")) {
|
||||
shiny::icon("toggle-off")
|
||||
} else if (any(c("Date", "POSIXct", "POSIXt") %in% x)) {
|
||||
shiny::icon("calendar-days")
|
||||
} else if ("hms" %in% x) {
|
||||
|
|
|
@ -310,9 +310,9 @@ data_visuals_server <- function(id,
|
|||
z = input$tertiary
|
||||
)
|
||||
},
|
||||
warning = function(warn) {
|
||||
showNotification(paste0(warn), type = "warning")
|
||||
},
|
||||
# warning = function(warn) {
|
||||
# showNotification(paste0(warn), type = "warning")
|
||||
# },
|
||||
error = function(err) {
|
||||
showNotification(paste0(err), type = "err")
|
||||
}
|
||||
|
@ -378,9 +378,9 @@ all_but <- function(data, ...) {
|
|||
#'
|
||||
#' @examples
|
||||
#' default_parsing(mtcars) |> subset_types("ordinal")
|
||||
#' default_parsing(mtcars) |> subset_types(c("dichotomous", "ordinal"))
|
||||
#' default_parsing(mtcars) |> subset_types(c("dichotomous", "ordinal" ,"categorical"))
|
||||
#' #' default_parsing(mtcars) |> subset_types("factor",class)
|
||||
subset_types <- function(data, types, type.fun = outcome_type) {
|
||||
subset_types <- function(data, types, type.fun = data_type) {
|
||||
data[sapply(data, type.fun) %in% types]
|
||||
}
|
||||
|
||||
|
@ -413,58 +413,58 @@ supported_plots <- function() {
|
|||
fun = "plot_hbars",
|
||||
descr = "Stacked horizontal bars",
|
||||
note = "A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars",
|
||||
primary.type = c("dichotomous", "ordinal"),
|
||||
secondary.type = c("dichotomous", "ordinal"),
|
||||
primary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
tertiary.type = c("dichotomous", "ordinal"),
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.extra = "none"
|
||||
),
|
||||
plot_violin = list(
|
||||
fun = "plot_violin",
|
||||
descr = "Violin plot",
|
||||
note = "A modern alternative to the classic boxplot to visualise data distribution",
|
||||
primary.type = c("continuous", "dichotomous", "ordinal"),
|
||||
secondary.type = c("dichotomous", "ordinal"),
|
||||
primary.type = c("continuous", "dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
secondary.extra = "none",
|
||||
tertiary.type = c("dichotomous", "ordinal")
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical")
|
||||
),
|
||||
# plot_ridge = list(
|
||||
# descr = "Ridge plot",
|
||||
# note = "An alternative option to visualise data distribution",
|
||||
# primary.type = "continuous",
|
||||
# secondary.type = c("dichotomous", "ordinal"),
|
||||
# tertiary.type = c("dichotomous", "ordinal"),
|
||||
# secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
# tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
# secondary.extra = NULL
|
||||
# ),
|
||||
plot_sankey = list(
|
||||
fun = "plot_sankey",
|
||||
descr = "Sankey plot",
|
||||
note = "A way of visualising change between groups",
|
||||
primary.type = c("dichotomous", "ordinal"),
|
||||
secondary.type = c("dichotomous", "ordinal"),
|
||||
primary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
secondary.extra = NULL,
|
||||
tertiary.type = c("dichotomous", "ordinal")
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical")
|
||||
),
|
||||
plot_scatter = list(
|
||||
fun = "plot_scatter",
|
||||
descr = "Scatter plot",
|
||||
note = "A classic way of showing the association between to variables",
|
||||
primary.type = "continuous",
|
||||
secondary.type = c("continuous", "ordinal"),
|
||||
secondary.type = c("continuous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
tertiary.type = c("dichotomous", "ordinal"),
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.extra = NULL
|
||||
),
|
||||
plot_box = list(
|
||||
fun = "plot_box",
|
||||
descr = "Box plot",
|
||||
note = "A classic way to plot data distribution by groups",
|
||||
primary.type = c("continuous", "dichotomous", "ordinal"),
|
||||
secondary.type = c("dichotomous", "ordinal"),
|
||||
primary.type = c("continuous", "dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
tertiary.type = c("dichotomous", "ordinal"),
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.extra = "none"
|
||||
),
|
||||
plot_euler = list(
|
||||
|
@ -475,7 +475,7 @@ supported_plots <- function() {
|
|||
secondary.type = "dichotomous",
|
||||
secondary.multi = TRUE,
|
||||
secondary.max = 4,
|
||||
tertiary.type = c("dichotomous", "ordinal"),
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.extra = NULL
|
||||
)
|
||||
)
|
||||
|
@ -500,11 +500,12 @@ supported_plots <- function() {
|
|||
#' possible_plots()
|
||||
possible_plots <- function(data) {
|
||||
# browser()
|
||||
# data <- if (is.reactive(data)) data() else data
|
||||
if (is.data.frame(data)) {
|
||||
data <- data[[1]]
|
||||
}
|
||||
|
||||
type <- outcome_type(data)
|
||||
type <- data_type(data)
|
||||
|
||||
if (type == "unknown") {
|
||||
out <- type
|
||||
|
@ -596,6 +597,7 @@ create_plot <- function(data, type, x, y, z = NULL, ...) {
|
|||
#' gtsummary::trial |> get_label(var = "trt")
|
||||
#' 1:10 |> get_label()
|
||||
get_label <- function(data, var = NULL) {
|
||||
# data <- if (is.reactive(data)) data() else data
|
||||
if (!is.null(var) & is.data.frame(data)) {
|
||||
data <- data[[var]]
|
||||
}
|
||||
|
@ -696,7 +698,9 @@ allign_axes <- function(...) {
|
|||
|
||||
xr <- clean_common_axis(p, "x")
|
||||
|
||||
p |> purrr::map(~ .x + ggplot2::xlim(xr) + ggplot2::ylim(yr))
|
||||
suppressWarnings({
|
||||
p |> purrr::map(~ .x + ggplot2::xlim(xr) + ggplot2::ylim(yr))
|
||||
})
|
||||
}
|
||||
|
||||
#' Extract and clean axis ranges
|
||||
|
@ -714,7 +718,7 @@ clean_common_axis <- function(p, axis) {
|
|||
if (is.numeric(.x)) {
|
||||
range(.x)
|
||||
} else {
|
||||
.x
|
||||
as.character(.x)
|
||||
}
|
||||
})() |>
|
||||
unique()
|
||||
|
|
|
@ -49,13 +49,13 @@ plot_box_single <- function(data, x, y=NULL, seed = 2103) {
|
|||
data[[y]] <- y
|
||||
}
|
||||
|
||||
discrete <- !outcome_type(data[[y]]) %in% "continuous"
|
||||
discrete <- !data_type(data[[y]]) %in% "continuous"
|
||||
|
||||
data |>
|
||||
ggplot2::ggplot(ggplot2::aes(x = !!dplyr::sym(x), y = !!dplyr::sym(y), fill = !!dplyr::sym(y), group = !!dplyr::sym(y))) +
|
||||
ggplot2::geom_boxplot(linewidth = 1.8, outliers = FALSE) +
|
||||
## THis could be optional in future
|
||||
ggplot2::geom_jitter(color = "black", size = 2, alpha = 0.9) +
|
||||
ggplot2::geom_jitter(color = "black", size = 2, alpha = 0.9, width = 0.1, height = .5) +
|
||||
ggplot2::coord_flip() +
|
||||
viridis::scale_fill_viridis(discrete = discrete, option = "D") +
|
||||
# ggplot2::theme_void() +
|
||||
|
|
|
@ -95,7 +95,7 @@ plot_euler <- function(data, x, y, z = NULL, seed = 2103) {
|
|||
# patchwork::wrap_plots(out, guides = "collect")
|
||||
}
|
||||
|
||||
|
||||
?withCallingHandlers()
|
||||
#' Easily plot single euler diagrams
|
||||
#'
|
||||
#' @returns ggplot2 object
|
||||
|
|
|
@ -44,7 +44,7 @@
|
|||
#' args.list = NULL,
|
||||
#' vars = c("mpg", "cyl")
|
||||
#' )
|
||||
#' broom::tidy(m)
|
||||
#' broom::tidy(m)
|
||||
regression_model <- function(data,
|
||||
outcome.str,
|
||||
auto.mode = FALSE,
|
||||
|
@ -60,7 +60,7 @@ regression_model <- function(data,
|
|||
}
|
||||
|
||||
## This will handle if outcome is not in data for nicer shiny behavior
|
||||
if (!outcome.str %in% names(data)){
|
||||
if (!outcome.str %in% names(data)) {
|
||||
outcome.str <- names(data)[1]
|
||||
print("outcome is not in data, first column is used")
|
||||
}
|
||||
|
@ -170,7 +170,7 @@ regression_model <- function(data,
|
|||
#' fun = "stats::glm",
|
||||
#' args.list = list(family = stats::binomial(link = "logit"))
|
||||
#' )
|
||||
#' lapply(m,broom::tidy) |> dplyr::bind_rows()
|
||||
#' lapply(m, broom::tidy) |> dplyr::bind_rows()
|
||||
#' }
|
||||
regression_model_uv <- function(data,
|
||||
outcome.str,
|
||||
|
@ -178,9 +178,8 @@ regression_model_uv <- function(data,
|
|||
fun = NULL,
|
||||
vars = NULL,
|
||||
...) {
|
||||
|
||||
## This will handle if outcome is not in data for nicer shiny behavior
|
||||
if (!outcome.str %in% names(data)){
|
||||
if (!outcome.str %in% names(data)) {
|
||||
outcome.str <- names(data)[1]
|
||||
print("outcome is not in data, first column is used")
|
||||
}
|
||||
|
@ -241,7 +240,7 @@ regression_model_uv <- function(data,
|
|||
|
||||
### HELPERS
|
||||
|
||||
#' Outcome data type assessment
|
||||
#' Data type assessment
|
||||
#'
|
||||
#' @param data data
|
||||
#'
|
||||
|
@ -251,17 +250,35 @@ regression_model_uv <- function(data,
|
|||
#' @examples
|
||||
#' mtcars |>
|
||||
#' default_parsing() |>
|
||||
#' lapply(outcome_type)
|
||||
outcome_type <- function(data) {
|
||||
#' lapply(data_type)
|
||||
#' c(1, 2) |> data_type()
|
||||
#' 1 |> data_type()
|
||||
#' c(rep(NA, 10)) |> data_type()
|
||||
#' sample(1:100, 50) |> data_type()
|
||||
#' factor(letters[1:20]) |> data_type()
|
||||
data_type <- function(data) {
|
||||
cl_d <- class(data)
|
||||
if (any(c("numeric", "integer") %in% cl_d)) {
|
||||
out <- "continuous"
|
||||
} else if (any(c("factor", "logical") %in% cl_d)) {
|
||||
if (length(levels(data)) == 2 | identical("logical",cl_d)) {
|
||||
if (all(is.na(data))) {
|
||||
out <- "empty"
|
||||
} else if (length(unique(data)) < 2) {
|
||||
out <- "monotone"
|
||||
} else if (any(c("factor", "logical") %in% cl_d) | length(unique(data)) == 2) {
|
||||
if (identical("logical", cl_d) | length(unique(data)) == 2) {
|
||||
out <- "dichotomous"
|
||||
} else if (length(levels(data)) > 2) {
|
||||
out <- "ordinal"
|
||||
} else {
|
||||
if (is.ordered(data)) {
|
||||
out <- "ordinal"
|
||||
} else {
|
||||
out <- "categorical"
|
||||
}
|
||||
}
|
||||
} else if (identical(cl_d, "character")) {
|
||||
out <- "text"
|
||||
} else if (!length(unique(data)) == 2) {
|
||||
## Previously had all thinkable classes
|
||||
## Now just assumes the class has not been defined above
|
||||
## any(c("numeric", "integer", "hms", "Date", "timediff") %in% cl_d) &
|
||||
out <- "continuous"
|
||||
} else {
|
||||
out <- "unknown"
|
||||
}
|
||||
|
@ -307,7 +324,7 @@ supported_functions <- function() {
|
|||
polr = list(
|
||||
descr = "Ordinal logistic regression model",
|
||||
design = "cross-sectional",
|
||||
out.type = "ordinal",
|
||||
out.type = c("ordinal","categorical"),
|
||||
fun = "MASS::polr",
|
||||
args.list = list(
|
||||
Hess = TRUE,
|
||||
|
@ -340,12 +357,13 @@ supported_functions <- function() {
|
|||
#' possible_functions(design = "cross-sectional")
|
||||
possible_functions <- function(data, design = c("cross-sectional")) {
|
||||
# browser()
|
||||
# data <- if (is.reactive(data)) data() else data
|
||||
if (is.data.frame(data)) {
|
||||
data <- data[[1]]
|
||||
}
|
||||
|
||||
design <- match.arg(design)
|
||||
type <- outcome_type(data)
|
||||
type <- data_type(data)
|
||||
|
||||
design_ls <- supported_functions() |>
|
||||
lapply(\(.x){
|
||||
|
@ -537,13 +555,16 @@ list2str <- function(data) {
|
|||
#'
|
||||
#' @examples
|
||||
#' \dontrun{
|
||||
#' gtsummary::trial |> regression_model_uv(
|
||||
#' outcome.str = "trt",
|
||||
#' fun = "stats::glm",
|
||||
#' args.list = list(family = stats::binomial(link = "logit"))
|
||||
#' ) |> lapply(broom::tidy) |> dplyr::bind_rows()
|
||||
#' gtsummary::trial |>
|
||||
#' regression_model_uv(
|
||||
#' outcome.str = "trt",
|
||||
#' fun = "stats::glm",
|
||||
#' args.list = list(family = stats::binomial(link = "logit"))
|
||||
#' ) |>
|
||||
#' lapply(broom::tidy) |>
|
||||
#' dplyr::bind_rows()
|
||||
#' ms <- regression_model_uv_list(data = default_parsing(mtcars), outcome.str = "mpg", fun.descr = "Linear regression model")
|
||||
#' lapply(ms$model,broom::tidy) |> dplyr::bind_rows()
|
||||
#' lapply(ms$model, broom::tidy) |> dplyr::bind_rows()
|
||||
#' }
|
||||
regression_model_uv_list <- function(data,
|
||||
outcome.str,
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
#### Current file: R//app_version.R
|
||||
########
|
||||
|
||||
app_version <- function()'250319_1327'
|
||||
app_version <- function()'250320_1310'
|
||||
|
||||
|
||||
########
|
||||
|
@ -296,16 +296,18 @@ columnSelectInput <- function(inputId, label, data, selected = "", ...,
|
|||
{
|
||||
"name": "%s",
|
||||
"label": "%s",
|
||||
"dataclass": "%s",
|
||||
"datatype": "%s"
|
||||
}'),
|
||||
col,
|
||||
attr(datar()[[col]], "label") %||% "",
|
||||
IDEAFilter:::get_dataFilter_class(datar()[[col]])
|
||||
IDEAFilter:::get_dataFilter_class(datar()[[col]]),
|
||||
data_type(datar()[[col]])
|
||||
)
|
||||
}, col = names(datar()))
|
||||
|
||||
if (!"none" %in% names(datar())){
|
||||
labels <- c("none"=list(sprintf('\n {\n \"name\": \"none\",\n \"label\": \"%s\",\n \"datatype\": \"\"\n }',none_label)),labels)
|
||||
labels <- c("none"=list(sprintf('\n {\n \"name\": \"none\",\n \"label\": \"%s\",\n \"dataclass\": \"\",\n \"datatype\": \"\"\n }',none_label)),labels)
|
||||
choices <- setNames(names(labels), labels)
|
||||
choices <- choices[match(if (length(col_subsetr()) == 0 || isTRUE(col_subsetr() == "")) names(datar()) else col_subsetr(), choices)]
|
||||
} else {
|
||||
|
@ -327,10 +329,16 @@ columnSelectInput <- function(inputId, label, data, selected = "", ...,
|
|||
return '<div style=\"padding: 3px 12px\">' +
|
||||
'<div><strong>' +
|
||||
escape(item.data.name) + ' ' +
|
||||
'<span style=\"opacity: 0.3;\"><code style=\"color: black;\"> ' +
|
||||
'</strong>' +
|
||||
(item.data.dataclass != '' ?
|
||||
'<span style=\"opacity: 0.9;\"><code style=\"color: black;\"> ' +
|
||||
item.data.dataclass +
|
||||
'</code></span>' : '' ) + ' ' +
|
||||
(item.data.datatype != '' ?
|
||||
'<span style=\"opacity: 0.9;\"><code style=\"color: black;\"> ' +
|
||||
item.data.datatype +
|
||||
'</code></span>' +
|
||||
'</strong></div>' +
|
||||
'</code></span>' : '' ) +
|
||||
'</div>' +
|
||||
(item.data.label != '' ? '<div style=\"line-height: 1em;\"><small>' + escape(item.data.label) + '</small></div>' : '') +
|
||||
'</div>';
|
||||
},
|
||||
|
@ -348,7 +356,76 @@ columnSelectInput <- function(inputId, label, data, selected = "", ...,
|
|||
)
|
||||
}
|
||||
|
||||
columnSelectInputStat <- function(inputId, label, data, selected = "", ...,
|
||||
col_subset = NULL, placeholder = "", onInitialize, none_label="No variable selected",maxItems=NULL) {
|
||||
data <- if (is.reactive(data)) data() else data
|
||||
col_subsetr <- if (is.reactive(col_subset)) col_subset else reactive(col_subset)
|
||||
|
||||
labels <- Map(function(col) {
|
||||
json <- sprintf(
|
||||
IDEAFilter:::strip_leading_ws('
|
||||
{
|
||||
"name": "%s",
|
||||
"label": "%s",
|
||||
"dataclass": "%s",
|
||||
"datatype": "%s"
|
||||
}'),
|
||||
col,
|
||||
attr(data[[col]], "label") %||% "",
|
||||
IDEAFilter:::get_dataFilter_class(data[[col]]),
|
||||
data_type(data[[col]])
|
||||
)
|
||||
}, col = names(data))
|
||||
|
||||
if (!"none" %in% names(data)){
|
||||
labels <- c("none"=list(sprintf('\n {\n \"name\": \"none\",\n \"label\": \"%s\",\n \"dataclass\": \"\",\n \"datatype\": \"\"\n }',none_label)),labels)
|
||||
choices <- setNames(names(labels), labels)
|
||||
choices <- choices[match(if (length(col_subsetr()) == 0 || isTRUE(col_subsetr() == "")) names(data) else col_subsetr(), choices)]
|
||||
} else {
|
||||
choices <- setNames(names(data), labels)
|
||||
choices <- choices[match(if (length(col_subsetr()) == 0 || isTRUE(col_subsetr() == "")) choices else col_subsetr(), choices)]
|
||||
}
|
||||
|
||||
shiny::selectizeInput(
|
||||
inputId = inputId,
|
||||
label = label,
|
||||
choices = choices,
|
||||
selected = selected,
|
||||
...,
|
||||
options = c(
|
||||
list(render = I("{
|
||||
// format the way that options are rendered
|
||||
option: function(item, escape) {
|
||||
item.data = JSON.parse(item.label);
|
||||
return '<div style=\"padding: 3px 12px\">' +
|
||||
'<div><strong>' +
|
||||
escape(item.data.name) + ' ' +
|
||||
'</strong>' +
|
||||
(item.data.dataclass != '' ?
|
||||
'<span style=\"opacity: 0.9;\"><code style=\"color: black;\"> ' +
|
||||
item.data.dataclass +
|
||||
'</code></span>' : '' ) + ' ' +
|
||||
(item.data.datatype != '' ?
|
||||
'<span style=\"opacity: 0.9;\"><code style=\"color: black;\"> ' +
|
||||
item.data.datatype +
|
||||
'</code></span>' : '' ) +
|
||||
'</div>' +
|
||||
(item.data.label != '' ? '<div style=\"line-height: 1em;\"><small>' + escape(item.data.label) + '</small></div>' : '') +
|
||||
'</div>';
|
||||
},
|
||||
|
||||
// avoid data vomit splashing on screen when an option is selected
|
||||
item: function(item, escape) {
|
||||
item.data = JSON.parse(item.label);
|
||||
return '<div>' +
|
||||
escape(item.data.name) +
|
||||
'</div>';
|
||||
}
|
||||
}")),
|
||||
if (!is.null(maxItems)) list(maxItems=maxItems)
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
#' A selectizeInput customized for named vectors
|
||||
#'
|
||||
|
@ -1407,9 +1484,9 @@ data_visuals_server <- function(id,
|
|||
z = input$tertiary
|
||||
)
|
||||
},
|
||||
warning = function(warn) {
|
||||
showNotification(paste0(warn), type = "warning")
|
||||
},
|
||||
# warning = function(warn) {
|
||||
# showNotification(paste0(warn), type = "warning")
|
||||
# },
|
||||
error = function(err) {
|
||||
showNotification(paste0(err), type = "err")
|
||||
}
|
||||
|
@ -1475,9 +1552,9 @@ all_but <- function(data, ...) {
|
|||
#'
|
||||
#' @examples
|
||||
#' default_parsing(mtcars) |> subset_types("ordinal")
|
||||
#' default_parsing(mtcars) |> subset_types(c("dichotomous", "ordinal"))
|
||||
#' default_parsing(mtcars) |> subset_types(c("dichotomous", "ordinal" ,"categorical"))
|
||||
#' #' default_parsing(mtcars) |> subset_types("factor",class)
|
||||
subset_types <- function(data, types, type.fun = outcome_type) {
|
||||
subset_types <- function(data, types, type.fun = data_type) {
|
||||
data[sapply(data, type.fun) %in% types]
|
||||
}
|
||||
|
||||
|
@ -1510,58 +1587,58 @@ supported_plots <- function() {
|
|||
fun = "plot_hbars",
|
||||
descr = "Stacked horizontal bars",
|
||||
note = "A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars",
|
||||
primary.type = c("dichotomous", "ordinal"),
|
||||
secondary.type = c("dichotomous", "ordinal"),
|
||||
primary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
tertiary.type = c("dichotomous", "ordinal"),
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.extra = "none"
|
||||
),
|
||||
plot_violin = list(
|
||||
fun = "plot_violin",
|
||||
descr = "Violin plot",
|
||||
note = "A modern alternative to the classic boxplot to visualise data distribution",
|
||||
primary.type = c("continuous", "dichotomous", "ordinal"),
|
||||
secondary.type = c("dichotomous", "ordinal"),
|
||||
primary.type = c("continuous", "dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
secondary.extra = "none",
|
||||
tertiary.type = c("dichotomous", "ordinal")
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical")
|
||||
),
|
||||
# plot_ridge = list(
|
||||
# descr = "Ridge plot",
|
||||
# note = "An alternative option to visualise data distribution",
|
||||
# primary.type = "continuous",
|
||||
# secondary.type = c("dichotomous", "ordinal"),
|
||||
# tertiary.type = c("dichotomous", "ordinal"),
|
||||
# secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
# tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
# secondary.extra = NULL
|
||||
# ),
|
||||
plot_sankey = list(
|
||||
fun = "plot_sankey",
|
||||
descr = "Sankey plot",
|
||||
note = "A way of visualising change between groups",
|
||||
primary.type = c("dichotomous", "ordinal"),
|
||||
secondary.type = c("dichotomous", "ordinal"),
|
||||
primary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
secondary.extra = NULL,
|
||||
tertiary.type = c("dichotomous", "ordinal")
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical")
|
||||
),
|
||||
plot_scatter = list(
|
||||
fun = "plot_scatter",
|
||||
descr = "Scatter plot",
|
||||
note = "A classic way of showing the association between to variables",
|
||||
primary.type = "continuous",
|
||||
secondary.type = c("continuous", "ordinal"),
|
||||
secondary.type = c("continuous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
tertiary.type = c("dichotomous", "ordinal"),
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.extra = NULL
|
||||
),
|
||||
plot_box = list(
|
||||
fun = "plot_box",
|
||||
descr = "Box plot",
|
||||
note = "A classic way to plot data distribution by groups",
|
||||
primary.type = c("continuous", "dichotomous", "ordinal"),
|
||||
secondary.type = c("dichotomous", "ordinal"),
|
||||
primary.type = c("continuous", "dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
tertiary.type = c("dichotomous", "ordinal"),
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.extra = "none"
|
||||
),
|
||||
plot_euler = list(
|
||||
|
@ -1572,7 +1649,7 @@ supported_plots <- function() {
|
|||
secondary.type = "dichotomous",
|
||||
secondary.multi = TRUE,
|
||||
secondary.max = 4,
|
||||
tertiary.type = c("dichotomous", "ordinal"),
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.extra = NULL
|
||||
)
|
||||
)
|
||||
|
@ -1597,11 +1674,12 @@ supported_plots <- function() {
|
|||
#' possible_plots()
|
||||
possible_plots <- function(data) {
|
||||
# browser()
|
||||
# data <- if (is.reactive(data)) data() else data
|
||||
if (is.data.frame(data)) {
|
||||
data <- data[[1]]
|
||||
}
|
||||
|
||||
type <- outcome_type(data)
|
||||
type <- data_type(data)
|
||||
|
||||
if (type == "unknown") {
|
||||
out <- type
|
||||
|
@ -1693,6 +1771,7 @@ create_plot <- function(data, type, x, y, z = NULL, ...) {
|
|||
#' gtsummary::trial |> get_label(var = "trt")
|
||||
#' 1:10 |> get_label()
|
||||
get_label <- function(data, var = NULL) {
|
||||
# data <- if (is.reactive(data)) data() else data
|
||||
if (!is.null(var) & is.data.frame(data)) {
|
||||
data <- data[[var]]
|
||||
}
|
||||
|
@ -1793,7 +1872,9 @@ allign_axes <- function(...) {
|
|||
|
||||
xr <- clean_common_axis(p, "x")
|
||||
|
||||
p |> purrr::map(~ .x + ggplot2::xlim(xr) + ggplot2::ylim(yr))
|
||||
suppressWarnings({
|
||||
p |> purrr::map(~ .x + ggplot2::xlim(xr) + ggplot2::ylim(yr))
|
||||
})
|
||||
}
|
||||
|
||||
#' Extract and clean axis ranges
|
||||
|
@ -1811,7 +1892,7 @@ clean_common_axis <- function(p, axis) {
|
|||
if (is.numeric(.x)) {
|
||||
range(.x)
|
||||
} else {
|
||||
.x
|
||||
as.character(.x)
|
||||
}
|
||||
})() |>
|
||||
unique()
|
||||
|
@ -2263,6 +2344,8 @@ add_class_icon <- function(grid, column = "class") {
|
|||
shiny::icon("arrow-down-1-9")
|
||||
} else if (identical(x, "character")) {
|
||||
shiny::icon("arrow-down-a-z")
|
||||
} else if (identical(x, "logical")) {
|
||||
shiny::icon("toggle-off")
|
||||
} else if (any(c("Date", "POSIXct", "POSIXt") %in% x)) {
|
||||
shiny::icon("calendar-days")
|
||||
} else if ("hms" %in% x) {
|
||||
|
@ -3392,13 +3475,13 @@ plot_box_single <- function(data, x, y=NULL, seed = 2103) {
|
|||
data[[y]] <- y
|
||||
}
|
||||
|
||||
discrete <- !outcome_type(data[[y]]) %in% "continuous"
|
||||
discrete <- !data_type(data[[y]]) %in% "continuous"
|
||||
|
||||
data |>
|
||||
ggplot2::ggplot(ggplot2::aes(x = !!dplyr::sym(x), y = !!dplyr::sym(y), fill = !!dplyr::sym(y), group = !!dplyr::sym(y))) +
|
||||
ggplot2::geom_boxplot(linewidth = 1.8, outliers = FALSE) +
|
||||
## THis could be optional in future
|
||||
ggplot2::geom_jitter(color = "black", size = 2, alpha = 0.9) +
|
||||
ggplot2::geom_jitter(color = "black", size = 2, alpha = 0.9, width = 0.1, height = .5) +
|
||||
ggplot2::coord_flip() +
|
||||
viridis::scale_fill_viridis(discrete = discrete, option = "D") +
|
||||
# ggplot2::theme_void() +
|
||||
|
@ -3524,7 +3607,7 @@ plot_euler <- function(data, x, y, z = NULL, seed = 2103) {
|
|||
# patchwork::wrap_plots(out, guides = "collect")
|
||||
}
|
||||
|
||||
|
||||
?withCallingHandlers()
|
||||
#' Easily plot single euler diagrams
|
||||
#'
|
||||
#' @returns ggplot2 object
|
||||
|
@ -4607,7 +4690,7 @@ redcap_demo_app <- function() {
|
|||
#' args.list = NULL,
|
||||
#' vars = c("mpg", "cyl")
|
||||
#' )
|
||||
#' broom::tidy(m)
|
||||
#' broom::tidy(m)
|
||||
regression_model <- function(data,
|
||||
outcome.str,
|
||||
auto.mode = FALSE,
|
||||
|
@ -4623,7 +4706,7 @@ regression_model <- function(data,
|
|||
}
|
||||
|
||||
## This will handle if outcome is not in data for nicer shiny behavior
|
||||
if (!outcome.str %in% names(data)){
|
||||
if (!outcome.str %in% names(data)) {
|
||||
outcome.str <- names(data)[1]
|
||||
print("outcome is not in data, first column is used")
|
||||
}
|
||||
|
@ -4733,7 +4816,7 @@ regression_model <- function(data,
|
|||
#' fun = "stats::glm",
|
||||
#' args.list = list(family = stats::binomial(link = "logit"))
|
||||
#' )
|
||||
#' lapply(m,broom::tidy) |> dplyr::bind_rows()
|
||||
#' lapply(m, broom::tidy) |> dplyr::bind_rows()
|
||||
#' }
|
||||
regression_model_uv <- function(data,
|
||||
outcome.str,
|
||||
|
@ -4741,9 +4824,8 @@ regression_model_uv <- function(data,
|
|||
fun = NULL,
|
||||
vars = NULL,
|
||||
...) {
|
||||
|
||||
## This will handle if outcome is not in data for nicer shiny behavior
|
||||
if (!outcome.str %in% names(data)){
|
||||
if (!outcome.str %in% names(data)) {
|
||||
outcome.str <- names(data)[1]
|
||||
print("outcome is not in data, first column is used")
|
||||
}
|
||||
|
@ -4804,7 +4886,7 @@ regression_model_uv <- function(data,
|
|||
|
||||
### HELPERS
|
||||
|
||||
#' Outcome data type assessment
|
||||
#' Data type assessment
|
||||
#'
|
||||
#' @param data data
|
||||
#'
|
||||
|
@ -4814,17 +4896,35 @@ regression_model_uv <- function(data,
|
|||
#' @examples
|
||||
#' mtcars |>
|
||||
#' default_parsing() |>
|
||||
#' lapply(outcome_type)
|
||||
outcome_type <- function(data) {
|
||||
#' lapply(data_type)
|
||||
#' c(1, 2) |> data_type()
|
||||
#' 1 |> data_type()
|
||||
#' c(rep(NA, 10)) |> data_type()
|
||||
#' sample(1:100, 50) |> data_type()
|
||||
#' factor(letters[1:20]) |> data_type()
|
||||
data_type <- function(data) {
|
||||
cl_d <- class(data)
|
||||
if (any(c("numeric", "integer") %in% cl_d)) {
|
||||
out <- "continuous"
|
||||
} else if (any(c("factor", "logical") %in% cl_d)) {
|
||||
if (length(levels(data)) == 2 | identical("logical",cl_d)) {
|
||||
if (all(is.na(data))) {
|
||||
out <- "empty"
|
||||
} else if (length(unique(data)) < 2) {
|
||||
out <- "monotone"
|
||||
} else if (any(c("factor", "logical") %in% cl_d) | length(unique(data)) == 2) {
|
||||
if (identical("logical", cl_d) | length(unique(data)) == 2) {
|
||||
out <- "dichotomous"
|
||||
} else if (length(levels(data)) > 2) {
|
||||
out <- "ordinal"
|
||||
} else {
|
||||
if (is.ordered(data)) {
|
||||
out <- "ordinal"
|
||||
} else {
|
||||
out <- "categorical"
|
||||
}
|
||||
}
|
||||
} else if (identical(cl_d, "character")) {
|
||||
out <- "text"
|
||||
} else if (!length(unique(data)) == 2) {
|
||||
## Previously had all thinkable classes
|
||||
## Now just assumes the class has not been defined above
|
||||
## any(c("numeric", "integer", "hms", "Date", "timediff") %in% cl_d) &
|
||||
out <- "continuous"
|
||||
} else {
|
||||
out <- "unknown"
|
||||
}
|
||||
|
@ -4870,7 +4970,7 @@ supported_functions <- function() {
|
|||
polr = list(
|
||||
descr = "Ordinal logistic regression model",
|
||||
design = "cross-sectional",
|
||||
out.type = "ordinal",
|
||||
out.type = c("ordinal","categorical"),
|
||||
fun = "MASS::polr",
|
||||
args.list = list(
|
||||
Hess = TRUE,
|
||||
|
@ -4903,12 +5003,13 @@ supported_functions <- function() {
|
|||
#' possible_functions(design = "cross-sectional")
|
||||
possible_functions <- function(data, design = c("cross-sectional")) {
|
||||
# browser()
|
||||
# data <- if (is.reactive(data)) data() else data
|
||||
if (is.data.frame(data)) {
|
||||
data <- data[[1]]
|
||||
}
|
||||
|
||||
design <- match.arg(design)
|
||||
type <- outcome_type(data)
|
||||
type <- data_type(data)
|
||||
|
||||
design_ls <- supported_functions() |>
|
||||
lapply(\(.x){
|
||||
|
@ -5100,13 +5201,16 @@ list2str <- function(data) {
|
|||
#'
|
||||
#' @examples
|
||||
#' \dontrun{
|
||||
#' gtsummary::trial |> regression_model_uv(
|
||||
#' outcome.str = "trt",
|
||||
#' fun = "stats::glm",
|
||||
#' args.list = list(family = stats::binomial(link = "logit"))
|
||||
#' ) |> lapply(broom::tidy) |> dplyr::bind_rows()
|
||||
#' gtsummary::trial |>
|
||||
#' regression_model_uv(
|
||||
#' outcome.str = "trt",
|
||||
#' fun = "stats::glm",
|
||||
#' args.list = list(family = stats::binomial(link = "logit"))
|
||||
#' ) |>
|
||||
#' lapply(broom::tidy) |>
|
||||
#' dplyr::bind_rows()
|
||||
#' ms <- regression_model_uv_list(data = default_parsing(mtcars), outcome.str = "mpg", fun.descr = "Linear regression model")
|
||||
#' lapply(ms$model,broom::tidy) |> dplyr::bind_rows()
|
||||
#' lapply(ms$model, broom::tidy) |> dplyr::bind_rows()
|
||||
#' }
|
||||
regression_model_uv_list <- function(data,
|
||||
outcome.str,
|
||||
|
@ -7217,6 +7321,15 @@ ui_elements <- list(
|
|||
)
|
||||
),
|
||||
shiny::helpText("Option to perform statistical comparisons between strata in baseline table.")
|
||||
),
|
||||
shiny::br(),
|
||||
shiny::br(),
|
||||
shiny::actionButton(
|
||||
inputId = "act_eval",
|
||||
label = "Evaluate",
|
||||
width = "100%",
|
||||
icon = shiny::icon("calculator"),
|
||||
disabled = FALSE
|
||||
)
|
||||
),
|
||||
bslib::accordion_panel(
|
||||
|
@ -7889,6 +8002,7 @@ server <- function(input, output, session) {
|
|||
rv$data_filtered <- data_filter()
|
||||
|
||||
### Save filtered data
|
||||
### without empty factor levels
|
||||
rv$list$data <- data_filter() |>
|
||||
REDCapCAST::fct_drop()
|
||||
|
||||
|
@ -8018,23 +8132,39 @@ server <- function(input, output, session) {
|
|||
## Keep these "old" selection options as a simple alternative to the modification pane
|
||||
|
||||
output$include_vars <- shiny::renderUI({
|
||||
shiny::selectizeInput(
|
||||
columnSelectInputStat(
|
||||
inputId = "include_vars",
|
||||
selected = NULL,
|
||||
label = "Covariables to include",
|
||||
choices = colnames(rv$data_filtered),
|
||||
data = rv$data_filtered,
|
||||
multiple = TRUE
|
||||
)
|
||||
|
||||
# shiny::selectizeInput(
|
||||
# inputId = "include_vars",
|
||||
# selected = NULL,
|
||||
# label = "Covariables to include",
|
||||
# choices = colnames(rv$data_filtered),
|
||||
# multiple = TRUE
|
||||
# )
|
||||
})
|
||||
|
||||
output$outcome_var <- shiny::renderUI({
|
||||
shiny::selectInput(
|
||||
columnSelectInputStat(
|
||||
inputId = "outcome_var",
|
||||
selected = NULL,
|
||||
label = "Select outcome variable",
|
||||
choices = colnames(rv$data_filtered),
|
||||
data = rv$data_filtered,
|
||||
multiple = FALSE
|
||||
)
|
||||
|
||||
# shiny::selectInput(
|
||||
# inputId = "outcome_var",
|
||||
# selected = NULL,
|
||||
# label = "Select outcome variable",
|
||||
# choices = colnames(rv$data_filtered),
|
||||
# multiple = FALSE
|
||||
# )
|
||||
})
|
||||
|
||||
output$regression_type <- shiny::renderUI({
|
||||
|
@ -8077,25 +8207,37 @@ server <- function(input, output, session) {
|
|||
})
|
||||
|
||||
output$strat_var <- shiny::renderUI({
|
||||
shiny::selectInput(
|
||||
columnSelectInputStat(
|
||||
inputId = "strat_var",
|
||||
selected = "none",
|
||||
label = "Select variable to stratify baseline",
|
||||
choices = c(
|
||||
data = rv$data_filtered,
|
||||
col_subset = c(
|
||||
"none",
|
||||
rv$data_filtered |>
|
||||
(\(.x){
|
||||
lapply(.x, \(.c){
|
||||
if (identical("factor", class(.c))) {
|
||||
.c
|
||||
}
|
||||
}) |>
|
||||
dplyr::bind_cols()
|
||||
})() |>
|
||||
colnames()
|
||||
),
|
||||
multiple = FALSE
|
||||
names(rv$data_filtered)[unlist(lapply(rv$data_filtered, data_type)) %in% c("dichotomous", "categorical", "ordinal")]
|
||||
)
|
||||
)
|
||||
|
||||
# shiny::selectInput(
|
||||
# inputId = "strat_var",
|
||||
# selected = "none",
|
||||
# label = "Select variable to stratify baseline",
|
||||
# choices = c(
|
||||
# "none",
|
||||
# names(rv$list$data)[unlist(lapply(rv$list$data,data_type)) %in% c("dichotomous","categorical","ordinal")]
|
||||
# # rv$data_filtered |>
|
||||
# # (\(.x){
|
||||
# # lapply(.x, \(.c){
|
||||
# # if (identical("factor", class(.c))) {
|
||||
# # .c
|
||||
# # }
|
||||
# # }) |>
|
||||
# # dplyr::bind_cols()
|
||||
# # })() |>
|
||||
# # colnames()
|
||||
# ),
|
||||
# multiple = FALSE
|
||||
# )
|
||||
})
|
||||
|
||||
|
||||
|
@ -8120,27 +8262,37 @@ server <- function(input, output, session) {
|
|||
shiny::observeEvent(
|
||||
# ignoreInit = TRUE,
|
||||
list(
|
||||
shiny::reactive(rv$list$data),
|
||||
shiny::reactive(rv$data),
|
||||
shiny::reactive(rv$data_original),
|
||||
data_filter(),
|
||||
input$strat_var,
|
||||
input$include_vars,
|
||||
input$complete_cutoff,
|
||||
input$add_p
|
||||
# shiny::reactive(rv$list$data),
|
||||
# shiny::reactive(rv$data),
|
||||
# shiny::reactive(rv$data_original),
|
||||
# data_filter(),
|
||||
# input$strat_var,
|
||||
# input$include_vars,
|
||||
# input$complete_cutoff,
|
||||
# input$add_p
|
||||
input$act_eval
|
||||
),
|
||||
{
|
||||
shiny::req(input$strat_var)
|
||||
shiny::req(rv$list$data)
|
||||
|
||||
if (input$strat_var == "none" | !input$strat_var %in% names(rv$list$data)) {
|
||||
data_tbl1 <- rv$list$data
|
||||
|
||||
if (input$strat_var == "none" | !input$strat_var %in% names(data_tbl1)) {
|
||||
by.var <- NULL
|
||||
} else {
|
||||
by.var <- input$strat_var
|
||||
}
|
||||
|
||||
## These steps are to handle logicals/booleans, that messes up the order of columns
|
||||
## Has been reported
|
||||
|
||||
if (!is.null(by.var) & identical("logical",class(data_tbl1[[by.var]]))) {
|
||||
data_tbl1[by.var] <- as.character(data_tbl1[[by.var]])
|
||||
}
|
||||
|
||||
rv$list$table1 <-
|
||||
rv$list$data |>
|
||||
data_tbl1 |>
|
||||
baseline_table(
|
||||
fun.args =
|
||||
list(
|
||||
|
|
|
@ -5,6 +5,6 @@ account: agdamsbo
|
|||
server: shinyapps.io
|
||||
hostUrl: https://api.shinyapps.io/v1
|
||||
appId: 13611288
|
||||
bundleId: 9969300
|
||||
bundleId: 9974967
|
||||
url: https://agdamsbo.shinyapps.io/freesearcheR/
|
||||
version: 1
|
||||
|
|
|
@ -339,6 +339,7 @@ server <- function(input, output, session) {
|
|||
rv$data_filtered <- data_filter()
|
||||
|
||||
### Save filtered data
|
||||
### without empty factor levels
|
||||
rv$list$data <- data_filter() |>
|
||||
REDCapCAST::fct_drop()
|
||||
|
||||
|
@ -468,23 +469,39 @@ server <- function(input, output, session) {
|
|||
## Keep these "old" selection options as a simple alternative to the modification pane
|
||||
|
||||
output$include_vars <- shiny::renderUI({
|
||||
shiny::selectizeInput(
|
||||
columnSelectInputStat(
|
||||
inputId = "include_vars",
|
||||
selected = NULL,
|
||||
label = "Covariables to include",
|
||||
choices = colnames(rv$data_filtered),
|
||||
data = rv$data_filtered,
|
||||
multiple = TRUE
|
||||
)
|
||||
|
||||
# shiny::selectizeInput(
|
||||
# inputId = "include_vars",
|
||||
# selected = NULL,
|
||||
# label = "Covariables to include",
|
||||
# choices = colnames(rv$data_filtered),
|
||||
# multiple = TRUE
|
||||
# )
|
||||
})
|
||||
|
||||
output$outcome_var <- shiny::renderUI({
|
||||
shiny::selectInput(
|
||||
columnSelectInputStat(
|
||||
inputId = "outcome_var",
|
||||
selected = NULL,
|
||||
label = "Select outcome variable",
|
||||
choices = colnames(rv$data_filtered),
|
||||
data = rv$data_filtered,
|
||||
multiple = FALSE
|
||||
)
|
||||
|
||||
# shiny::selectInput(
|
||||
# inputId = "outcome_var",
|
||||
# selected = NULL,
|
||||
# label = "Select outcome variable",
|
||||
# choices = colnames(rv$data_filtered),
|
||||
# multiple = FALSE
|
||||
# )
|
||||
})
|
||||
|
||||
output$regression_type <- shiny::renderUI({
|
||||
|
@ -527,25 +544,37 @@ server <- function(input, output, session) {
|
|||
})
|
||||
|
||||
output$strat_var <- shiny::renderUI({
|
||||
shiny::selectInput(
|
||||
columnSelectInputStat(
|
||||
inputId = "strat_var",
|
||||
selected = "none",
|
||||
label = "Select variable to stratify baseline",
|
||||
choices = c(
|
||||
data = rv$data_filtered,
|
||||
col_subset = c(
|
||||
"none",
|
||||
rv$data_filtered |>
|
||||
(\(.x){
|
||||
lapply(.x, \(.c){
|
||||
if (identical("factor", class(.c))) {
|
||||
.c
|
||||
}
|
||||
}) |>
|
||||
dplyr::bind_cols()
|
||||
})() |>
|
||||
colnames()
|
||||
),
|
||||
multiple = FALSE
|
||||
names(rv$data_filtered)[unlist(lapply(rv$data_filtered, data_type)) %in% c("dichotomous", "categorical", "ordinal")]
|
||||
)
|
||||
)
|
||||
|
||||
# shiny::selectInput(
|
||||
# inputId = "strat_var",
|
||||
# selected = "none",
|
||||
# label = "Select variable to stratify baseline",
|
||||
# choices = c(
|
||||
# "none",
|
||||
# names(rv$list$data)[unlist(lapply(rv$list$data,data_type)) %in% c("dichotomous","categorical","ordinal")]
|
||||
# # rv$data_filtered |>
|
||||
# # (\(.x){
|
||||
# # lapply(.x, \(.c){
|
||||
# # if (identical("factor", class(.c))) {
|
||||
# # .c
|
||||
# # }
|
||||
# # }) |>
|
||||
# # dplyr::bind_cols()
|
||||
# # })() |>
|
||||
# # colnames()
|
||||
# ),
|
||||
# multiple = FALSE
|
||||
# )
|
||||
})
|
||||
|
||||
|
||||
|
@ -570,27 +599,37 @@ server <- function(input, output, session) {
|
|||
shiny::observeEvent(
|
||||
# ignoreInit = TRUE,
|
||||
list(
|
||||
shiny::reactive(rv$list$data),
|
||||
shiny::reactive(rv$data),
|
||||
shiny::reactive(rv$data_original),
|
||||
data_filter(),
|
||||
input$strat_var,
|
||||
input$include_vars,
|
||||
input$complete_cutoff,
|
||||
input$add_p
|
||||
# shiny::reactive(rv$list$data),
|
||||
# shiny::reactive(rv$data),
|
||||
# shiny::reactive(rv$data_original),
|
||||
# data_filter(),
|
||||
# input$strat_var,
|
||||
# input$include_vars,
|
||||
# input$complete_cutoff,
|
||||
# input$add_p
|
||||
input$act_eval
|
||||
),
|
||||
{
|
||||
shiny::req(input$strat_var)
|
||||
shiny::req(rv$list$data)
|
||||
|
||||
if (input$strat_var == "none" | !input$strat_var %in% names(rv$list$data)) {
|
||||
data_tbl1 <- rv$list$data
|
||||
|
||||
if (input$strat_var == "none" | !input$strat_var %in% names(data_tbl1)) {
|
||||
by.var <- NULL
|
||||
} else {
|
||||
by.var <- input$strat_var
|
||||
}
|
||||
|
||||
## These steps are to handle logicals/booleans, that messes up the order of columns
|
||||
## Has been reported
|
||||
|
||||
if (!is.null(by.var) & identical("logical",class(data_tbl1[[by.var]]))) {
|
||||
data_tbl1[by.var] <- as.character(data_tbl1[[by.var]])
|
||||
}
|
||||
|
||||
rv$list$table1 <-
|
||||
rv$list$data |>
|
||||
data_tbl1 |>
|
||||
baseline_table(
|
||||
fun.args =
|
||||
list(
|
||||
|
|
|
@ -304,6 +304,15 @@ ui_elements <- list(
|
|||
)
|
||||
),
|
||||
shiny::helpText("Option to perform statistical comparisons between strata in baseline table.")
|
||||
),
|
||||
shiny::br(),
|
||||
shiny::br(),
|
||||
shiny::actionButton(
|
||||
inputId = "act_eval",
|
||||
label = "Evaluate",
|
||||
width = "100%",
|
||||
icon = shiny::icon("calculator"),
|
||||
disabled = FALSE
|
||||
)
|
||||
),
|
||||
bslib::accordion_panel(
|
||||
|
|
BIN
inst/apps/FreesearchR/www/favicon.png
Normal file
BIN
inst/apps/FreesearchR/www/favicon.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 6.4 KiB |
Loading…
Add table
Reference in a new issue