mirror of
https://github.com/agdamsbo/FreesearchR.git
synced 2025-12-15 00:52:09 +01:00
docs: vignettes migrated see NEWS
This commit is contained in:
parent
735ef71425
commit
fde5a22526
5 changed files with 8 additions and 71 deletions
|
|
@ -1,6 +1,6 @@
|
|||
Package: FreesearchR
|
||||
Title: Easy data analysis for clinicians
|
||||
Version: 25.11.1
|
||||
Version: 25.11.2
|
||||
Authors@R: c(
|
||||
person("Andreas Gammelgaard", "Damsbo",email="agdamsbo@clin.au.dk", role = c("aut", "cre"),
|
||||
comment = c(ORCID = "0000-0002-7559-1154")),
|
||||
|
|
|
|||
4
NEWS.md
4
NEWS.md
|
|
@ -1,3 +1,7 @@
|
|||
# FreesearchR 25.11.2
|
||||
|
||||
*NEW* Vignettes were moved to the [FreesearchR project knowledge base](https://freesearchr.github.io/FreesearchR-knowledge/). This was mainly to ease rendering and allow quick and easy updates as well as future translations.
|
||||
|
||||
# FreesearchR 25.11.1
|
||||
|
||||
*NEW* Added option to select extensive baseline table selecting between "Minimal" (current) or "Extensive" which adds mean/sd and min/max as well as plots all levels also for dichotomous variables.
|
||||
|
|
|
|||
|
|
@ -16,23 +16,4 @@ knitr::opts_chunk$set(
|
|||
options(rmarkdown.html_vignette.check_title = FALSE)
|
||||
```
|
||||
|
||||
```{r setup}
|
||||
library(FreesearchR)
|
||||
i18n_path <- system.file("translations", package = "FreesearchR")
|
||||
i18n <- shiny.i18n::Translator$new(translation_csvs_path = i18n_path)
|
||||
i18n$set_translation_language("en")
|
||||
```
|
||||
|
||||
## A clinical data class
|
||||
|
||||
Traditionally in *R*, data is identified by classes, like numeric, integer, double, logical, factor etc. These classes can be a little confusing from a clinical or operational standpoint. In the ***FreesearchR*** app, these classes has been simplified and modified to the following data types, that are assigned on a prioritised order like the following:
|
||||
|
||||
```{r echo = FALSE}
|
||||
data_types() |> purrr::imap(\(.x,.i){
|
||||
dplyr::bind_cols("type"=.i,.x,.name_repair = "unique_quiet")
|
||||
}) |> dplyr::bind_rows() |>
|
||||
setNames(c("Data type","Description","Data classes included")) |>
|
||||
knitr::kable()
|
||||
```
|
||||
|
||||
Categorising data in this way makes sense when making choices on how to evaluate and analyse data. This is used throughout the ***FreesearchR*** app to simplify data handling.
|
||||
Documentation on the data types used in FreesearchR can be found in the [FreesearchR project documentations (link)](https://freesearchr.github.io/FreesearchR-knowledge/app/data_types.html).
|
||||
|
|
|
|||
|
|
@ -15,12 +15,4 @@ knitr::opts_chunk$set(
|
|||
options(rmarkdown.html_vignette.check_title = FALSE)
|
||||
```
|
||||
|
||||
```{r setup}
|
||||
library(FreesearchR)
|
||||
```
|
||||
|
||||
## Considering missing observations
|
||||
|
||||
### Further reading
|
||||
|
||||
The authors behind the [{finalfit}-package](https://finalfit.org/index.html) have shared a very comprehensive article on what to do and think about missing observations in your data. Please [have a look here](https://finalfit.org/articles/missing.html).
|
||||
Considerations of data missingness can be found in the [FreesearchR project documentations (link)](https://freesearchr.github.io/FreesearchR-knowledge/intro/missingness.html).
|
||||
|
|
|
|||
|
|
@ -16,44 +16,4 @@ knitr::opts_chunk$set(
|
|||
options(rmarkdown.html_vignette.check_title = FALSE)
|
||||
```
|
||||
|
||||
```{r setup}
|
||||
library(FreesearchR)
|
||||
i18n_path <- system.file("translations", package = "FreesearchR")
|
||||
i18n <- shiny.i18n::Translator$new(translation_csvs_path = i18n_path)
|
||||
i18n$set_translation_language("en")
|
||||
```
|
||||
|
||||
## Basic visualisations
|
||||
|
||||
The goal of ***FreesearchR*** is to keep things simple. Visuals can get very complicated. We provide a selection of plots, that helps visualise typical clinical and will be enough for most use cases, and for publishing to most journals.
|
||||
|
||||
If you want to go further, have a look at these sites with suggestions and sample code for data plotting:
|
||||
|
||||
- [*R* Charts](https://r-charts.com/): Extensive gallery with great plots
|
||||
|
||||
- [*R* Graph gallery](https://r-graph-gallery.com/): Another gallery with great graphs
|
||||
|
||||
- [graphics principles](https://graphicsprinciples.github.io/): Easy to follow recommendations for clear visuals.
|
||||
|
||||
|
||||
### Available plots
|
||||
|
||||
Below are the available plot types listed.
|
||||
|
||||
```{r echo = FALSE}
|
||||
c("continuous", "dichotomous", "categorical") |>
|
||||
lapply(\(.x){
|
||||
dplyr::bind_cols(
|
||||
dplyr::tibble("Data type"=.x),
|
||||
supported_plots() |>
|
||||
lapply(\(.y){
|
||||
if (.x %in% .y$primary.type){
|
||||
.y[c("descr","note")]|> dplyr::bind_cols()
|
||||
}
|
||||
})|>
|
||||
dplyr::bind_rows() |>
|
||||
setNames(c("Plot type","Description")))
|
||||
}) |>
|
||||
dplyr::bind_rows() |>
|
||||
knitr::kable()
|
||||
```
|
||||
Documentation on visuals used in FreesearchR can be found in the [FreesearchR project documentations (link)](https://freesearchr.github.io/FreesearchR-knowledge/app/visuals.html).
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue