mirror of
https://github.com/agdamsbo/FreesearchR.git
synced 2025-09-12 09:59:39 +02:00
dont stop on warning!
This commit is contained in:
parent
c69baaaac1
commit
d664adc500
1 changed files with 27 additions and 25 deletions
|
@ -310,9 +310,9 @@ data_visuals_server <- function(id,
|
|||
z = input$tertiary
|
||||
)
|
||||
},
|
||||
warning = function(warn) {
|
||||
showNotification(paste0(warn), type = "warning")
|
||||
},
|
||||
# warning = function(warn) {
|
||||
# showNotification(paste0(warn), type = "warning")
|
||||
# },
|
||||
error = function(err) {
|
||||
showNotification(paste0(err), type = "err")
|
||||
}
|
||||
|
@ -378,9 +378,9 @@ all_but <- function(data, ...) {
|
|||
#'
|
||||
#' @examples
|
||||
#' default_parsing(mtcars) |> subset_types("ordinal")
|
||||
#' default_parsing(mtcars) |> subset_types(c("dichotomous", "ordinal"))
|
||||
#' default_parsing(mtcars) |> subset_types(c("dichotomous", "ordinal" ,"categorical"))
|
||||
#' #' default_parsing(mtcars) |> subset_types("factor",class)
|
||||
subset_types <- function(data, types, type.fun = outcome_type) {
|
||||
subset_types <- function(data, types, type.fun = data_type) {
|
||||
data[sapply(data, type.fun) %in% types]
|
||||
}
|
||||
|
||||
|
@ -413,58 +413,58 @@ supported_plots <- function() {
|
|||
fun = "plot_hbars",
|
||||
descr = "Stacked horizontal bars",
|
||||
note = "A classical way of visualising the distribution of an ordinal scale like the modified Ranking Scale and known as Grotta bars",
|
||||
primary.type = c("dichotomous", "ordinal"),
|
||||
secondary.type = c("dichotomous", "ordinal"),
|
||||
primary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
tertiary.type = c("dichotomous", "ordinal"),
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.extra = "none"
|
||||
),
|
||||
plot_violin = list(
|
||||
fun = "plot_violin",
|
||||
descr = "Violin plot",
|
||||
note = "A modern alternative to the classic boxplot to visualise data distribution",
|
||||
primary.type = c("continuous", "dichotomous", "ordinal"),
|
||||
secondary.type = c("dichotomous", "ordinal"),
|
||||
primary.type = c("continuous", "dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
secondary.extra = "none",
|
||||
tertiary.type = c("dichotomous", "ordinal")
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical")
|
||||
),
|
||||
# plot_ridge = list(
|
||||
# descr = "Ridge plot",
|
||||
# note = "An alternative option to visualise data distribution",
|
||||
# primary.type = "continuous",
|
||||
# secondary.type = c("dichotomous", "ordinal"),
|
||||
# tertiary.type = c("dichotomous", "ordinal"),
|
||||
# secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
# tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
# secondary.extra = NULL
|
||||
# ),
|
||||
plot_sankey = list(
|
||||
fun = "plot_sankey",
|
||||
descr = "Sankey plot",
|
||||
note = "A way of visualising change between groups",
|
||||
primary.type = c("dichotomous", "ordinal"),
|
||||
secondary.type = c("dichotomous", "ordinal"),
|
||||
primary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
secondary.extra = NULL,
|
||||
tertiary.type = c("dichotomous", "ordinal")
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical")
|
||||
),
|
||||
plot_scatter = list(
|
||||
fun = "plot_scatter",
|
||||
descr = "Scatter plot",
|
||||
note = "A classic way of showing the association between to variables",
|
||||
primary.type = "continuous",
|
||||
secondary.type = c("continuous", "ordinal"),
|
||||
secondary.type = c("continuous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
tertiary.type = c("dichotomous", "ordinal"),
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.extra = NULL
|
||||
),
|
||||
plot_box = list(
|
||||
fun = "plot_box",
|
||||
descr = "Box plot",
|
||||
note = "A classic way to plot data distribution by groups",
|
||||
primary.type = c("continuous", "dichotomous", "ordinal"),
|
||||
secondary.type = c("dichotomous", "ordinal"),
|
||||
primary.type = c("continuous", "dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.multi = FALSE,
|
||||
tertiary.type = c("dichotomous", "ordinal"),
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.extra = "none"
|
||||
),
|
||||
plot_euler = list(
|
||||
|
@ -475,7 +475,7 @@ supported_plots <- function() {
|
|||
secondary.type = "dichotomous",
|
||||
secondary.multi = TRUE,
|
||||
secondary.max = 4,
|
||||
tertiary.type = c("dichotomous", "ordinal"),
|
||||
tertiary.type = c("dichotomous", "ordinal" ,"categorical"),
|
||||
secondary.extra = NULL
|
||||
)
|
||||
)
|
||||
|
@ -504,7 +504,7 @@ possible_plots <- function(data) {
|
|||
data <- data[[1]]
|
||||
}
|
||||
|
||||
type <- outcome_type(data)
|
||||
type <- data_type(data)
|
||||
|
||||
if (type == "unknown") {
|
||||
out <- type
|
||||
|
@ -696,7 +696,9 @@ allign_axes <- function(...) {
|
|||
|
||||
xr <- clean_common_axis(p, "x")
|
||||
|
||||
p |> purrr::map(~ .x + ggplot2::xlim(xr) + ggplot2::ylim(yr))
|
||||
suppressWarnings({
|
||||
p |> purrr::map(~ .x + ggplot2::xlim(xr) + ggplot2::ylim(yr))
|
||||
})
|
||||
}
|
||||
|
||||
#' Extract and clean axis ranges
|
||||
|
@ -714,7 +716,7 @@ clean_common_axis <- function(p, axis) {
|
|||
if (is.numeric(.x)) {
|
||||
range(.x)
|
||||
} else {
|
||||
.x
|
||||
as.character(.x)
|
||||
}
|
||||
})() |>
|
||||
unique()
|
||||
|
|
Loading…
Add table
Reference in a new issue