refined missingness evaluation

This commit is contained in:
Andreas Gammelgaard Damsbo 2025-12-11 17:22:47 +01:00
parent af523edc00
commit 35afbc1dc9
No known key found for this signature in database
21 changed files with 1377 additions and 779 deletions

View file

@ -1116,6 +1116,18 @@ references:
orcid: https://orcid.org/0000-0002-0172-3812
year: '2025'
doi: 10.32614/CRAN.package.data.table
- type: software
title: viridis
abstract: 'viridis: Colorblind-Friendly Color Maps for R'
notes: Imports
url: https://sjmgarnier.github.io/viridis/
repository: https://CRAN.R-project.org/package=viridis
authors:
- family-names: Garnier
given-names: Simon
email: garnier@njit.edu
year: '2025'
doi: 10.32614/CRAN.package.viridis
- type: software
title: styler
abstract: 'styler: Non-Invasive Pretty Printing of R Code'

View file

@ -69,7 +69,8 @@ Imports:
NHANES,
shiny.i18n,
stRoke,
data.table
data.table,
viridis
Suggests:
styler,
devtools,

View file

@ -75,15 +75,15 @@ data_missings_server <- function(id,
shiny::req(data())
vectorSelectInput(
inputId = ns("missings_method"),
label = i18n$t("Select missings analysis to apply"),
label = i18n$t("Analysis method for missingness overview"),
choices = setNames(
c(
"predictors",
"outcome"
),
c(
i18n$t("Variables"),
i18n$t("By outcome")
i18n$t("Overview of missings across variables"),
i18n$t("Overview of difference in variables by missing status in outcome")
)
)
)
@ -96,15 +96,19 @@ data_missings_server <- function(id,
shiny::req(input$missings_method)
# browser()
if (input$missings_method == "predictors") {
label <- i18n$t("Select a variable for grouped overview")
df <- data_type_filter(data(), type = c("categorical", "dichotomous"))
col_subset <- c("none", names(df))
} else {
label <- i18n$t("Select outcome variable for overview")
df <- datar()[apply(datar(), 2, anyNA)]
col_subset <- names(df)
}
columnSelectInput(
inputId = ns("missings_var"),
label = i18n$t("Select variable to stratify analysis"),
label = label,
data = df,
col_subset = c("none", names(df)),
col_subset = col_subset,
none_label = i18n$t("No variable")
)
})
@ -144,7 +148,11 @@ data_missings_server <- function(id,
# if (is.null(variabler()) || variabler() == "" || !variabler() %in% names(data()) || variabler() == "none") {
# tbl <- rv$data()
if (anyNA(datar())) {
title <- i18n$t("No variable chosen for analysis")
if (input$missings_method == "predictors") {
title <- i18n$t("Overview of missing observations")
} else {
title <- i18n$t("No outcome measure chosen")
}
} else {
title <- i18n$t("No missing observations")
}

Binary file not shown.

View file

@ -335,7 +335,7 @@ validation_lib <- function(name = NULL) {
"mcar" = function(x, y) {
### Placeholder for missingness validation
list(
string = i18n$t("There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."),
string = i18n$t("There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."),
summary.fun = mcar_validate,
summary.fun.args = list(
data = x,

View file

@ -44,6 +44,7 @@
|cardx |0.3.1 |2025-12-04 |CRAN (R 4.4.3) |
|caTools |1.18.3 |2024-09-04 |CRAN (R 4.4.1) |
|cellranger |1.1.0 |2016-07-27 |CRAN (R 4.4.0) |
|cffr |1.2.0 |2025-01-25 |CRAN (R 4.4.1) |
|checkmate |2.3.3 |2025-08-18 |CRAN (R 4.4.1) |
|class |7.3-23 |2025-01-01 |CRAN (R 4.4.1) |
|classInt |0.4-11 |2025-01-08 |CRAN (R 4.4.1) |
@ -53,6 +54,7 @@
|colorspace |2.1-2 |2025-09-22 |CRAN (R 4.4.1) |
|commonmark |2.0.0 |2025-07-07 |CRAN (R 4.4.1) |
|crayon |1.5.3 |2024-06-20 |CRAN (R 4.4.1) |
|curl |7.0.0 |2025-08-19 |CRAN (R 4.4.1) |
|data.table |1.17.8 |2025-07-10 |CRAN (R 4.4.1) |
|datamods |1.5.3 |2024-10-02 |CRAN (R 4.4.1) |
|datawizard |1.3.0 |2025-10-11 |CRAN (R 4.4.1) |
@ -111,6 +113,7 @@
|iterators |1.0.14 |2022-02-05 |CRAN (R 4.4.1) |
|jquerylib |0.1.4 |2021-04-26 |CRAN (R 4.4.0) |
|jsonlite |2.0.0 |2025-03-27 |CRAN (R 4.4.1) |
|jsonvalidate |1.5.0 |2025-02-07 |CRAN (R 4.4.1) |
|KernSmooth |2.23-26 |2025-01-01 |CRAN (R 4.4.1) |
|keyring |1.4.1 |2025-06-15 |CRAN (R 4.4.1) |
|knitr |1.50 |2025-03-16 |CRAN (R 4.4.1) |
@ -138,6 +141,7 @@
|openssl |2.3.4 |2025-09-30 |CRAN (R 4.4.1) |
|openxlsx2 |1.22 |2025-12-07 |CRAN (R 4.4.3) |
|otel |0.2.0 |2025-08-29 |CRAN (R 4.4.1) |
|pak |0.9.1 |2025-12-01 |CRAN (R 4.4.3) |
|parameters |0.28.3 |2025-11-25 |CRAN (R 4.4.3) |
|patchwork |1.3.2 |2025-08-25 |CRAN (R 4.4.1) |
|pbmcapply |1.5.1 |2022-04-28 |CRAN (R 4.4.1) |
@ -165,6 +169,7 @@
|R6 |2.6.1 |2025-02-15 |CRAN (R 4.4.1) |
|ragg |1.5.0 |2025-09-02 |CRAN (R 4.4.1) |
|rankinPlot |1.1.0 |2023-01-30 |CRAN (R 4.4.0) |
|rappdirs |0.3.3 |2021-01-31 |CRAN (R 4.4.1) |
|rbibutils |2.4 |2025-11-07 |CRAN (R 4.4.1) |
|RColorBrewer |1.1-3 |2022-04-03 |CRAN (R 4.4.1) |
|Rcpp |1.1.0 |2025-07-02 |CRAN (R 4.4.1) |
@ -221,7 +226,10 @@
|usethis |3.2.1 |2025-09-06 |CRAN (R 4.4.1) |
|utf8 |1.2.6 |2025-06-08 |CRAN (R 4.4.1) |
|uuid |1.2-1 |2024-07-29 |CRAN (R 4.4.1) |
|V8 |8.0.1 |2025-10-10 |CRAN (R 4.4.1) |
|vctrs |0.6.5 |2023-12-01 |CRAN (R 4.4.0) |
|viridis |0.6.5 |2024-01-29 |CRAN (R 4.4.0) |
|viridisLite |0.4.2 |2023-05-02 |CRAN (R 4.4.1) |
|vroom |1.6.7 |2025-11-28 |CRAN (R 4.4.3) |
|withr |3.0.2 |2024-10-28 |CRAN (R 4.4.1) |
|writexl |1.5.4 |2025-04-15 |CRAN (R 4.4.1) |

View file

@ -1,7 +1,7 @@
########
#### Current file: /var/folders/9l/xbc19wxx0g79jdd2sf_0v291mhwh7f/T//RtmpejDCIE/filec7542b7ed14.R
#### Current file: /var/folders/9l/xbc19wxx0g79jdd2sf_0v291mhwh7f/T//RtmpT9sPX5/file6c80650aba81.R
########
i18n_path <- here::here("translations")
@ -49,6 +49,7 @@ library(shiny.i18n)
## Translation init
i18n <- shiny.i18n::Translator$new(translation_csvs_path = i18n_path)
# i18n <- shiny.i18n::Translator$new(translation_csvs_path = here::here("inst/translations/"))
i18n$set_translation_language("en")
@ -62,7 +63,7 @@ i18n$set_translation_language("en")
#### Current file: /Users/au301842/FreesearchR/R//app_version.R
########
app_version <- function()'25.12.2'
app_version <- function()'25.12.3'
########
@ -856,8 +857,18 @@ make_choices_with_infos <- function(data) {
#' @importFrom shiny selectizeInput
#' @export
#'
columnSelectInput <- function(inputId, label, data, selected = "", ...,
col_subset = NULL, placeholder = "", onInitialize, none_label="No variable selected",maxItems=NULL) {
columnSelectInput <- function(
inputId,
label,
data,
selected = "",
...,
col_subset = NULL,
placeholder = "",
onInitialize,
none_label = "No variable selected",
maxItems = NULL
) {
datar <- if (is.reactive(data)) data else reactive(data)
col_subsetr <- if (is.reactive(col_subset)) col_subset else reactive(col_subset)
@ -877,8 +888,8 @@ columnSelectInput <- function(inputId, label, data, selected = "", ...,
)
}, col = names(datar()))
if (!"none" %in% names(datar())){
labels <- c("none"=list(sprintf('\n {\n \"name\": \"none\",\n \"label\": \"%s\",\n \"dataclass\": \"\",\n \"datatype\": \"\"\n }',none_label)),labels)
if (!"none" %in% names(datar())) {
labels <- c("none" = list(sprintf('\n {\n \"name\": \"none\",\n \"label\": \"%s\",\n \"dataclass\": \"\",\n \"datatype\": \"\"\n }', none_label)), labels)
choices <- setNames(names(labels), labels)
choices <- choices[match(if (length(col_subsetr()) == 0 || isTRUE(col_subsetr() == "")) names(datar()) else col_subsetr(), choices)]
} else {
@ -922,7 +933,7 @@ columnSelectInput <- function(inputId, label, data, selected = "", ...,
'</div>';
}
}")),
if (!is.null(maxItems)) list(maxItems=maxItems)
if (!is.null(maxItems)) list(maxItems = maxItems)
)
)
}
@ -943,31 +954,31 @@ columnSelectInput <- function(inputId, label, data, selected = "", ...,
#'
#' @examples
#' if (shiny::interactive()) {
#' shinyApp(
#' ui = fluidPage(
#' shiny::uiOutput("select"),
#' tableOutput("data")
#' ),
#' server = function(input, output) {
#' output$select <- shiny::renderUI({
#' vectorSelectInput(
#' inputId = "variable", label = "Variable:",
#' data = c(
#' "Cylinders" = "cyl",
#' "Transmission" = "am",
#' "Gears" = "gear"
#' shinyApp(
#' ui = fluidPage(
#' shiny::uiOutput("select"),
#' tableOutput("data")
#' ),
#' server = function(input, output) {
#' output$select <- shiny::renderUI({
#' vectorSelectInput(
#' inputId = "variable", label = "Variable:",
#' data = c(
#' "Cylinders" = "cyl",
#' "Transmission" = "am",
#' "Gears" = "gear"
#' )
#' )
#' )
#' })
#' })
#'
#' output$data <- renderTable(
#' {
#' mtcars[, c("mpg", input$variable), drop = FALSE]
#' },
#' rownames = TRUE
#' )
#' }
#' )
#' output$data <- renderTable(
#' {
#' mtcars[, c("mpg", input$variable), drop = FALSE]
#' },
#' rownames = TRUE
#' )
#' }
#' )
#' }
vectorSelectInput <- function(inputId,
label,
@ -1022,8 +1033,6 @@ vectorSelectInput <- function(inputId,
}
########
#### Current file: /Users/au301842/FreesearchR/R//cut_var.R
########
@ -2662,7 +2671,7 @@ create_plot <- function(data, type, pri, sec, ter = NULL, ...) {
out
}
#' Print label, and if missing print variable name
#' Print label, and if missing print variable name for plots
#'
#' @param data vector or data frame
#' @param var variable name. Optional.
@ -4429,7 +4438,7 @@ data_types <- function() {
#### Current file: /Users/au301842/FreesearchR/R//hosted_version.R
########
hosted_version <- function()'v25.12.2-251203'
hosted_version <- function()'v25.12.3-251211'
########
@ -5521,18 +5530,46 @@ launch_FreesearchR <- function(...){
#' Data correlations evaluation module
#'
#' @param id Module id
#' @param ... additional UI elements to show before the table overview
#'
#' @name data-missings
#' @returns Shiny ui module
#' @export
data_missings_ui <- function(id) {
data_missings_ui <- function(id, ...) {
ns <- shiny::NS(id)
shiny::tagList(
gt::gt_output(outputId = ns("missings_table"))
list(
bslib::layout_sidebar(
sidebar = bslib::sidebar(
bslib::accordion(
id = ns("acc_mis"),
open = "acc_chars",
multiple = FALSE,
bslib::accordion_panel(
value = "acc_pan_mis",
title = "Settings",
icon = bsicons::bs_icon("x-circle"),
shiny::uiOutput(ns("missings_method")),
shiny::uiOutput(ns("missings_var")),
shiny::helpText(i18n$t("Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.")),
shiny::br(),
shiny::actionButton(
inputId = ns("act_miss"),
label = i18n$t("Evaluate"),
width = "100%",
icon = shiny::icon("calculator"),
disabled = FALSE
)
)
)
),
...,
gt::gt_output(outputId = ns("missings_table"))
)
)
}
## This should really just be rebuild to only contain a function
#'
#' @param data data
@ -5543,108 +5580,200 @@ data_missings_ui <- function(id) {
#' @export
data_missings_server <- function(id,
data,
variable,
max_level=20,
max_level = 20,
...) {
shiny::moduleServer(
id = id,
module = function(input, output, session) {
# ns <- session$ns
ns <- session$ns
datar <- if (is.reactive(data)) data else reactive(data)
variabler <- if (is.reactive(variable)) variable else reactive(variable)
rv <- shiny::reactiveValues(
data = NULL,
table = NULL
)
rv$data <- shiny::reactive({
df_tbl <- datar()
by_var <- variabler()
## Notes
##
## Code export is still missing
## Direct table export would be nice
tryCatch(
{
out <- compare_missings(df_tbl,by_var,max_level = max_level)
},
error = function(err) {
showNotification(paste0("Error: ", err), type = "err")
}
)
shiny::observe(
output$missings_method <- shiny::renderUI({
shiny::req(data())
vectorSelectInput(
inputId = ns("missings_method"),
label = i18n$t("Analysis method for missingness overview"),
choices = setNames(
c(
"predictors",
"outcome"
),
c(
i18n$t("Overview of missings across variables"),
i18n$t("Overview of difference in variables by missing status in outcome")
)
)
)
})
)
out
})
output$missings_table <- gt::render_gt({
shiny::req(datar)
shiny::req(variabler)
if (is.null(variabler()) || variabler() == "" || !variabler() %in% names(datar())) {
tbl <- rv$data()
if (anyNA(datar())){
title <- i18n$t("No variable chosen for analysis")
shiny::observe({
output$missings_var <- shiny::renderUI({
shiny::req(datar())
shiny::req(input$missings_method)
# browser()
if (input$missings_method == "predictors") {
label <- i18n$t("Select a variable for grouped overview")
df <- data_type_filter(data(), type = c("categorical", "dichotomous"))
col_subset <- c("none", names(df))
} else {
title <- i18n$t("No missing observations")
label <- i18n$t("Select outcome variable for overview")
df <- datar()[apply(datar(), 2, anyNA)]
col_subset <- names(df)
}
} else {
tbl <- rv$data()|>
gtsummary::bold_p()
title <- glue::glue(i18n$t("Missing vs non-missing observations in the variable **'{variabler()}'**"))
}
out <- tbl |>
gtsummary::as_gt() |>
gt::tab_header(title = gt::md(title))
rv$table <- out
out
columnSelectInput(
inputId = ns("missings_var"),
label = label,
data = df,
col_subset = col_subset,
none_label = i18n$t("No variable")
)
})
})
return(reactive(rv$table))
shiny::observeEvent(
list(input$act_miss),
{
shiny::req(datar())
shiny::req(input$missings_var)
# browser()
df_tbl <- datar()
by_var <- input$missings_var
parameters <- list(
by_var = by_var,
max_level = max_level,
type = input$missings_method
)
tryCatch(
{
shiny::withProgress(message = i18n$t("Calculating. Hold tight for a moment.."), {
out <- do.call(
compare_missings,
modifyList(parameters, list(data = df_tbl))
)
})
},
error = function(err) {
showNotification(paste0("Error: ", err), type = "err")
}
)
if (is.null(input$missings_var) || input$missings_var == "" || !input$missings_var %in% names(datar()) || input$missings_var == "none") {
# if (is.null(variabler()) || variabler() == "" || !variabler() %in% names(data()) || variabler() == "none") {
# tbl <- rv$data()
if (anyNA(datar())) {
if (input$missings_method == "predictors") {
title <- i18n$t("Overview of missing observations")
} else {
title <- i18n$t("No outcome measure chosen")
}
} else {
title <- i18n$t("No missing observations")
}
} else {
## Due to reactivity, the table updates too quickly. this mitigates that issue..
if (input$missings_var == "predictors") {
title <- glue::glue(i18n$t("Missings across variables by the variable **'{input$missings_var}'**"))
} else {
title <- glue::glue(i18n$t("Missing vs non-missing observations in the variable **'{input$missings_var}'**"))
}
}
attr(out, "tbl_title") <- title
rv$data <- shiny::reactive(out)
}
)
shiny::observeEvent(
list(
# input$act_miss
rv$data
),
{
output$missings_table <- gt::render_gt({
shiny::req(rv$data)
# shiny::req(input$missings_var)
# browser()
if ("p.value" %in% names(rv$data()[["table_body"]])) {
tbl <- rv$data() |>
gtsummary::bold_p()
} else {
tbl <- rv$data()
}
out <- tbl |>
gtsummary::as_gt() |>
gt::tab_header(title = gt::md(attr(tbl, "tbl_title")))
attr(out, "strat_var") <- input$missings_var
rv$table <- out
out
})
}
)
return(shiny::reactive(rv$table))
}
)
}
missing_demo_app <- function() {
ui <- shiny::fluidPage(
shiny::actionButton(
inputId = "modal_missings",
label = "Browse data",
width = "100%",
disabled = FALSE
),
shiny::selectInput(
inputId = "missings_var",
label = "Select variable to stratify analysis", choices = c("cyl", "vs")
),
data_missings_ui("data")
ui <- do.call(
bslib::page,
c(
list(
title = i18n$t("Missings"),
icon = bsicons::bs_icon("x-circle")
),
data_missings_ui(id = "data")
)
)
server <- function(input, output, session) {
data_demo <- mtcars
data_demo[sample(1:32, 10), "cyl"] <- NA
data_demo[sample(1:32, 8), "vs"] <- NA
data_missings_server(id = "data", data = data_demo, variable = shiny::reactive(input$missings_var))
data_missings_server(id = "data", data = data_demo)
visual_summary_server(id = "visual", data = data_demo)
# visual_summary_server(id = "visual", data = data_demo)
observeEvent(input$modal_missings, {
tryCatch(
{
modal_visual_summary(id = "visual")
},
error = function(err) {
showNotification(paste0("We encountered the following error browsing your data: ", err), type = "err")
}
)
})
# observeEvent(input$modal_missings, {
# tryCatch(
# {
# modal_visual_summary(id = "visual")
# },
# error = function(err) {
# showNotification(paste0("We encountered the following error browsing your data: ", err), type = "err")
# }
# )
# })
}
shiny::shinyApp(ui, server)
}
missing_demo_app()
# missing_demo_app()
#' Pairwise comparison of missings across covariables
#'
@ -5654,28 +5783,80 @@ missing_demo_app()
#' @returns gtsummary list object
#' @export
#'
compare_missings <- function(data,by_var,max_level=20){
compare_missings <- function(
data,
by_var,
max_level = 20,
type = c("predictors", "outcome")
) {
type <- match.arg(type)
if (!is.null(by_var) && by_var != "" && by_var %in% names(data)) {
data <- data |>
lapply(\(.x){
# browser()
if (is.factor(.x)){
cut_var(.x,breaks=20,type="top")
if (is.factor(.x)) {
cut_var(.x, breaks = 20, type = "top")
} else {
.x
}
}) |> dplyr::bind_cols()
}) |>
dplyr::bind_cols()
data[[by_var]] <- ifelse(is.na(data[[by_var]]), "Missing", "Non-missing")
if (type == "predictors") {
data <- missings_logic_across(data, exclude = by_var)
} else {
data[[by_var]] <- ifelse(is.na(data[[by_var]]), "Missing", "Non-missing")
}
out <- gtsummary::tbl_summary(data, by = by_var) |>
gtsummary::add_p()
} else {
if (type == "predictors") {
data <- missings_logic_across(data)
}
out <- gtsummary::tbl_summary(data)
}
out
}
#' Converting all variables to logicals by missing status
#'
#' @param data data
#' @param exclude character vector of variable names to be excluded
#'
#' @returns data frame
#' @export
#'
#' @examples
#' mtcars |> missings_logic_across("cyl")
#' ## gtsummary::trial |>
#' ## missings_logic_across() |>
#' ## gtsummary::tbl_summary()
missings_logic_across <- function(data, exclude = NULL) {
# This function includes a approach way to preserve variable labels
names(data) |>
lapply(\(.x){
# browser()
# Saving original labels
lab <- REDCapCAST::get_attr(data[[.x]], attr = "label")
if (!.x %in% exclude) {
out <- is.na(data[[.x]])
} else {
out <- data[[.x]]
}
if (!is.na(lab)) {
# Restoring original labels, if not NA
REDCapCAST::set_attr(data = out, label = lab, attr = "label", overwrite = TRUE)
} else {
out
}
}) |>
dplyr::bind_cols(.name_repair = "unique_quiet") |>
setNames(names(data))
}
########
#### Current file: /Users/au301842/FreesearchR/R//plot_bar.R
@ -10156,26 +10337,15 @@ ui_elements <- function(selection) {
data_correlations_ui(id = "correlations", height = 600)
)
),
bslib::nav_panel(
title = i18n$t("Missings"),
icon = bsicons::bs_icon("x-circle"),
bslib::layout_sidebar(
sidebar = bslib::sidebar(
bslib::accordion(
id = "acc_mis",
open = "acc_chars",
multiple = FALSE,
bslib::accordion_panel(
value = "acc_pan_mis",
title = "Settings",
icon = bsicons::bs_icon("x-circle"),
shiny::uiOutput("missings_var"),
shiny::helpText(i18n$t("To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random."))
)
)
do.call(
bslib::nav_panel,
c(
list(
title = i18n$t("Missings"),
icon = bsicons::bs_icon("x-circle")
),
validation_ui("validation_mcar"),
data_missings_ui(id = "missingness")
data_missings_ui(id = "missingness",
validation_ui("validation_mcar"))
)
)
),
@ -11438,7 +11608,7 @@ convert_to <- function(data,
#' Get variable(s) to convert
#'
#' @param vars Output of [summary_vars()]
#' @param vars variables, output from summary_vars() function
#' @param classes_input List of inputs containing new classes
#'
#' @return a `data.table`.
@ -11671,6 +11841,9 @@ validation_server <- function(id,
purrr::list_flatten()
} else if (length(to_validate) > 0) {
out <- make_validation_alerts(to_validate)
} else {
## Defaulting to an emptu output vector
out <- character()
}
valid_ui$x <- tagList(out)
}
@ -11894,7 +12067,7 @@ validation_lib <- function(name = NULL) {
"mcar" = function(x, y) {
### Placeholder for missingness validation
list(
string = i18n$t("There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}."),
string = i18n$t("There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."),
summary.fun = mcar_validate,
summary.fun.args = list(
data = x,
@ -12923,6 +13096,7 @@ server <- function(input, output, session) {
shiny::updateActionButton(inputId = "modal_browse", disabled = TRUE)
shiny::updateActionButton(inputId = "modal_visual_overview", disabled = TRUE)
shiny::updateActionButton(inputId = "act_eval", disabled = TRUE)
# shiny::updateActionButton(inputId = "act_miss", disabled = TRUE)
# bslib::nav_hide(id = "main_panel",
# target = "nav_visuals")
@ -12931,6 +13105,7 @@ server <- function(input, output, session) {
shiny::updateActionButton(inputId = "modal_browse", disabled = FALSE)
shiny::updateActionButton(inputId = "modal_visual_overview", disabled = FALSE)
shiny::updateActionButton(inputId = "act_eval", disabled = FALSE)
# shiny::updateActionButton(inputId = "act_miss", disabled = FALSE)
# bslib::nav_show(id = "main_panel",
# target = "nav_visuals")
@ -12946,7 +13121,6 @@ server <- function(input, output, session) {
})
##############################################################################
#########
######### Data modification section
@ -13185,12 +13359,13 @@ server <- function(input, output, session) {
# mcar_validate(data=rv$missings()[["_data"]],outcome = input$missings_var)
if (!is.null(rv$missings())) {
req(rv$missings())
req(input$missings_var)
# req(input$missings_var)
# browser()
rv_validations$mcar <- make_validation(
ls = validation_lib("mcar"),
list(
x = rv$missings()[["_data"]],
y = input$missings_var
y = attr(rv$missings(), "strat_var")
)
)
}
@ -13523,8 +13698,6 @@ server <- function(input, output, session) {
# })
shiny::observeEvent(
list(
input$act_eval
@ -13536,7 +13709,6 @@ server <- function(input, output, session) {
shiny::req(rv$list$data)
parameters <- list(
by.var = input$strat_var,
add.p = input$add_p == "yes",
@ -13617,25 +13789,16 @@ server <- function(input, output, session) {
cutoff = shiny::reactive(input$cor_cutoff)
)
shiny::observe(
output$missings_var <- shiny::renderUI({
columnSelectInput(
inputId = "missings_var",
label = i18n$t("Select variable to stratify analysis"),
data = shiny::reactive({
shiny::req(rv$data_filtered)
rv$data_filtered[apply(rv$data_filtered, 2, anyNA)]
})()
)
})
)
## Missingness evaluation
rv$missings <- data_missings_server(
id = "missingness",
data = shiny::reactive(rv$data_filtered),
variable = shiny::reactive(input$missings_var)
data = shiny::reactive(rv$data_filtered)
)
# shiny::observe({
# req(rv$missings())
# browser()

File diff suppressed because one or more lines are too long

View file

@ -150,10 +150,7 @@
"Settings","Indstillinger"
"The following error occured on determining correlations:","Følgende fejl opstod i forbindelse med korrelationsanalysen:"
"We encountered the following error creating your report:","Følgende fejl opstod, da rapporten blev dannet:"
"No variable chosen for analysis","Ingen variabel er valgt til analysen"
"No missing observations","Ingen manglende observationer"
"Missing vs non-missing observations in the variable **'{variabler()}'**","Manglende vs ikke-manglende observationer i variablen **'{variabler()}'**"
"There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}.","Der er en betydelig korrelation blandt {n_nonmcar} variabler sammenlignet efter manglende observationer i {outcome}."
"There is a total of {p_miss} % missing observations.","Der er i alt {p_miss} % manglende observationer."
"Median:","Median:"
"Restore original data","Gendan originale data"
@ -246,11 +243,9 @@
"Data characteristics table","Oversigtstabel"
"The dataset without text variables","Datasættet uden variabler formateret som tekst"
"Creating the table. Hold on for a moment..","Opretter tabellen. Vent et øjeblik.."
"Select variable to stratify analysis","Vælg variabler til at stratificere analysen"
"Generating the report. Hold on for a moment..","Opretter rapporten. Vent et øjeblik.."
"We encountered the following error showing missingness:","Under analysen af manglende observationer opstod følgende fejl:"
"We encountered the following error browsing your data:","I forsøget på at vise en dataoversigt opstod følgende fejl:"
"To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random.","Vælg svarvariablen, for at få hjælp til at vurdere om manglende observationer manglende tilfældigt eller ej (kun variabler med manglende data kan vælges). Hvis der er statistisk signifikant forskel mellem nogle af de øvrige variabler i forhold til manglende data i den valgte variable kan det være et udtryk for at data ikke mangler tilfældigt."
"Choose a name for the column to be created or modified, then enter an expression before clicking on the button below to create the variable, or cancel to exit without saving anything.","Vælg et navn til den nye variabel, skriv din formel og tryk så på knappen for at gemme variablen, eller annuler for at lukke uden at gemme."
"Please fill in web address and API token, then press 'Connect'.","Udfyld serveradresse og API-nøgle, og tryk så 'Fobind'."
"Other","Other"
@ -299,3 +294,15 @@
"Words","Words"
"Shorten to first letters","Shorten to first letters"
"Shorten to first words","Shorten to first words"
"Missings across variables by the variable **'{input$missings_var}'**","Missings across variables by the variable **'{input$missings_var}'**"
"Missing vs non-missing observations in the variable **'{input$missings_var}'**","Missing vs non-missing observations in the variable **'{input$missings_var}'**"
"Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.","Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random."
"Calculating. Hold tight for a moment..","Calculating. Hold tight for a moment.."
"Overview of missing observations","Overview of missing observations"
"Analysis method for missingness overview","Analysis method for missingness overview"
"Overview of missings across variables","Overview of missings across variables"
"Overview of difference in variables by missing status in outcome","Overview of difference in variables by missing status in outcome"
"Select a variable for grouped overview","Select a variable for grouped overview"
"Select outcome variable for overview","Select outcome variable for overview"
"No outcome measure chosen","No outcome measure chosen"
"There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.","There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."

1 en da
150 Settings Indstillinger
151 The following error occured on determining correlations: Følgende fejl opstod i forbindelse med korrelationsanalysen:
152 We encountered the following error creating your report: Følgende fejl opstod, da rapporten blev dannet:
No variable chosen for analysis Ingen variabel er valgt til analysen
153 No missing observations Ingen manglende observationer
Missing vs non-missing observations in the variable **'{variabler()}'** Manglende vs ikke-manglende observationer i variablen **'{variabler()}'**
There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}. Der er en betydelig korrelation blandt {n_nonmcar} variabler sammenlignet efter manglende observationer i {outcome}.
154 There is a total of {p_miss} % missing observations. Der er i alt {p_miss} % manglende observationer.
155 Median: Median:
156 Restore original data Gendan originale data
243 Data characteristics table Oversigtstabel
244 The dataset without text variables Datasættet uden variabler formateret som tekst
245 Creating the table. Hold on for a moment.. Opretter tabellen. Vent et øjeblik..
Select variable to stratify analysis Vælg variabler til at stratificere analysen
246 Generating the report. Hold on for a moment.. Opretter rapporten. Vent et øjeblik..
247 We encountered the following error showing missingness: Under analysen af manglende observationer opstod følgende fejl:
248 We encountered the following error browsing your data: I forsøget på at vise en dataoversigt opstod følgende fejl:
To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random. Vælg svarvariablen, for at få hjælp til at vurdere om manglende observationer manglende tilfældigt eller ej (kun variabler med manglende data kan vælges). Hvis der er statistisk signifikant forskel mellem nogle af de øvrige variabler i forhold til manglende data i den valgte variable kan det være et udtryk for at data ikke mangler tilfældigt.
249 Choose a name for the column to be created or modified, then enter an expression before clicking on the button below to create the variable, or cancel to exit without saving anything. Vælg et navn til den nye variabel, skriv din formel og tryk så på knappen for at gemme variablen, eller annuler for at lukke uden at gemme.
250 Please fill in web address and API token, then press 'Connect'. Udfyld serveradresse og API-nøgle, og tryk så 'Fobind'.
251 Other Other
294 Words Words
295 Shorten to first letters Shorten to first letters
296 Shorten to first words Shorten to first words
297 Missings across variables by the variable **'{input$missings_var}'** Missings across variables by the variable **'{input$missings_var}'**
298 Missing vs non-missing observations in the variable **'{input$missings_var}'** Missing vs non-missing observations in the variable **'{input$missings_var}'**
299 Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random. Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.
300 Calculating. Hold tight for a moment.. Calculating. Hold tight for a moment..
301 Overview of missing observations Overview of missing observations
302 Analysis method for missingness overview Analysis method for missingness overview
303 Overview of missings across variables Overview of missings across variables
304 Overview of difference in variables by missing status in outcome Overview of difference in variables by missing status in outcome
305 Select a variable for grouped overview Select a variable for grouped overview
306 Select outcome variable for overview Select outcome variable for overview
307 No outcome measure chosen No outcome measure chosen
308 There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.

View file

@ -103,9 +103,7 @@
"You can choose between these file types:","You can choose between these file types:"
"You can import {file_extensions_text} files","You can import {file_extensions_text} files"
"First five rows are shown below:","First five rows are shown below:"
"No variable chosen for analysis","No variable chosen for analysis"
"No missing observations","No missing observations"
"Missing vs non-missing observations in the variable **'{variabler()}'**","Missing vs non-missing observations in the variable **'{variabler()}'**"
"Grouped by {get_label(data,ter)}","Grouped by {get_label(data,ter)}"
"Import data from REDCap","Import data from REDCap"
"REDCap server","REDCap server"
@ -207,7 +205,6 @@
"Correlation cut-off","Correlation cut-off"
"Set the cut-off for considered 'highly correlated'.","Set the cut-off for considered 'highly correlated'."
"Missings","Missings"
"To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random.","To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random."
"Visuals","Visuals"
"Analysis validation","Analysis validation"
"Report","Report"
@ -230,7 +227,6 @@
"You removed {p_out} % of observations.","You removed {p_out} % of observations."
"You removed {p_out} % of variables.","You removed {p_out} % of variables."
"There is a total of {p_miss} % missing observations.","There is a total of {p_miss} % missing observations."
"There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}.","There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}."
"Data includes {n_pairs} pairs of highly correlated variables.","Data includes {n_pairs} pairs of highly correlated variables."
"Class","Class"
"Observations","Observations"
@ -267,7 +263,6 @@
"The dataset without text variables","The dataset without text variables"
"The data includes {n_col} variables. Please limit to 100.","The data includes {n_col} variables. Please limit to 100."
"Creating the table. Hold on for a moment..","Creating the table. Hold on for a moment.."
"Select variable to stratify analysis","Select variable to stratify analysis"
"Generating the report. Hold on for a moment..","Generating the report. Hold on for a moment.."
"We encountered the following error creating your report:","We encountered the following error creating your report:"
"There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data.","There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data."
@ -299,3 +294,15 @@
"Words","Words"
"Shorten to first letters","Shorten to first letters"
"Shorten to first words","Shorten to first words"
"Missings across variables by the variable **'{input$missings_var}'**","Missings across variables by the variable **'{input$missings_var}'**"
"Missing vs non-missing observations in the variable **'{input$missings_var}'**","Missing vs non-missing observations in the variable **'{input$missings_var}'**"
"Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.","Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random."
"Calculating. Hold tight for a moment..","Calculating. Hold tight for a moment.."
"Overview of missing observations","Overview of missing observations"
"Analysis method for missingness overview","Analysis method for missingness overview"
"Overview of missings across variables","Overview of missings across variables"
"Overview of difference in variables by missing status in outcome","Overview of difference in variables by missing status in outcome"
"Select a variable for grouped overview","Select a variable for grouped overview"
"Select outcome variable for overview","Select outcome variable for overview"
"No outcome measure chosen","No outcome measure chosen"
"There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.","There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."

1 en de
103 You can choose between these file types: You can choose between these file types:
104 You can import {file_extensions_text} files You can import {file_extensions_text} files
105 First five rows are shown below: First five rows are shown below:
No variable chosen for analysis No variable chosen for analysis
106 No missing observations No missing observations
Missing vs non-missing observations in the variable **'{variabler()}'** Missing vs non-missing observations in the variable **'{variabler()}'**
107 Grouped by {get_label(data,ter)} Grouped by {get_label(data,ter)}
108 Import data from REDCap Import data from REDCap
109 REDCap server REDCap server
205 Correlation cut-off Correlation cut-off
206 Set the cut-off for considered 'highly correlated'. Set the cut-off for considered 'highly correlated'.
207 Missings Missings
To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random. To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random.
208 Visuals Visuals
209 Analysis validation Analysis validation
210 Report Report
227 You removed {p_out} % of observations. You removed {p_out} % of observations.
228 You removed {p_out} % of variables. You removed {p_out} % of variables.
229 There is a total of {p_miss} % missing observations. There is a total of {p_miss} % missing observations.
There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}. There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}.
230 Data includes {n_pairs} pairs of highly correlated variables. Data includes {n_pairs} pairs of highly correlated variables.
231 Class Class
232 Observations Observations
263 The dataset without text variables The dataset without text variables
264 The data includes {n_col} variables. Please limit to 100. The data includes {n_col} variables. Please limit to 100.
265 Creating the table. Hold on for a moment.. Creating the table. Hold on for a moment..
Select variable to stratify analysis Select variable to stratify analysis
266 Generating the report. Hold on for a moment.. Generating the report. Hold on for a moment..
267 We encountered the following error creating your report: We encountered the following error creating your report:
268 There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data. There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data.
294 Words Words
295 Shorten to first letters Shorten to first letters
296 Shorten to first words Shorten to first words
297 Missings across variables by the variable **'{input$missings_var}'** Missings across variables by the variable **'{input$missings_var}'**
298 Missing vs non-missing observations in the variable **'{input$missings_var}'** Missing vs non-missing observations in the variable **'{input$missings_var}'**
299 Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random. Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.
300 Calculating. Hold tight for a moment.. Calculating. Hold tight for a moment..
301 Overview of missing observations Overview of missing observations
302 Analysis method for missingness overview Analysis method for missingness overview
303 Overview of missings across variables Overview of missings across variables
304 Overview of difference in variables by missing status in outcome Overview of difference in variables by missing status in outcome
305 Select a variable for grouped overview Select a variable for grouped overview
306 Select outcome variable for overview Select outcome variable for overview
307 No outcome measure chosen No outcome measure chosen
308 There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.

View file

@ -103,9 +103,7 @@
"You can choose between these file types:","You can choose between these file types:"
"You can import {file_extensions_text} files","You can import {file_extensions_text} files"
"First five rows are shown below:","First five rows are shown below:"
"No variable chosen for analysis","No variable chosen for analysis"
"No missing observations","No missing observations"
"Missing vs non-missing observations in the variable **'{variabler()}'**","Missing vs non-missing observations in the variable **'{variabler()}'**"
"Grouped by {get_label(data,ter)}","Grouped by {get_label(data,ter)}"
"Import data from REDCap","Import data from REDCap"
"REDCap server","REDCap server"
@ -207,7 +205,6 @@
"Correlation cut-off","Correlation cut-off"
"Set the cut-off for considered 'highly correlated'.","Set the cut-off for considered 'highly correlated'."
"Missings","Missings"
"To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random.","To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random."
"Visuals","Visuals"
"Analysis validation","Analysis validation"
"Report","Report"
@ -230,7 +227,6 @@
"You removed {p_out} % of observations.","You removed {p_out} % of observations."
"You removed {p_out} % of variables.","You removed {p_out} % of variables."
"There is a total of {p_miss} % missing observations.","There is a total of {p_miss} % missing observations."
"There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}.","There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}."
"Data includes {n_pairs} pairs of highly correlated variables.","Data includes {n_pairs} pairs of highly correlated variables."
"Class","Class"
"Observations","Observations"
@ -267,7 +263,6 @@
"The dataset without text variables","The dataset without text variables"
"The data includes {n_col} variables. Please limit to 100.","The data includes {n_col} variables. Please limit to 100."
"Creating the table. Hold on for a moment..","Creating the table. Hold on for a moment.."
"Select variable to stratify analysis","Select variable to stratify analysis"
"Generating the report. Hold on for a moment..","Generating the report. Hold on for a moment.."
"We encountered the following error creating your report:","We encountered the following error creating your report:"
"There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data.","There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data."
@ -299,3 +294,15 @@
"Words","Words"
"Shorten to first letters","Shorten to first letters"
"Shorten to first words","Shorten to first words"
"Missings across variables by the variable **'{input$missings_var}'**","Missings across variables by the variable **'{input$missings_var}'**"
"Missing vs non-missing observations in the variable **'{input$missings_var}'**","Missing vs non-missing observations in the variable **'{input$missings_var}'**"
"Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.","Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random."
"Calculating. Hold tight for a moment..","Calculating. Hold tight for a moment.."
"Overview of missing observations","Overview of missing observations"
"Analysis method for missingness overview","Analysis method for missingness overview"
"Overview of missings across variables","Overview of missings across variables"
"Overview of difference in variables by missing status in outcome","Overview of difference in variables by missing status in outcome"
"Select a variable for grouped overview","Select a variable for grouped overview"
"Select outcome variable for overview","Select outcome variable for overview"
"No outcome measure chosen","No outcome measure chosen"
"There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.","There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."

1 en sv
103 You can choose between these file types: You can choose between these file types:
104 You can import {file_extensions_text} files You can import {file_extensions_text} files
105 First five rows are shown below: First five rows are shown below:
No variable chosen for analysis No variable chosen for analysis
106 No missing observations No missing observations
Missing vs non-missing observations in the variable **'{variabler()}'** Missing vs non-missing observations in the variable **'{variabler()}'**
107 Grouped by {get_label(data,ter)} Grouped by {get_label(data,ter)}
108 Import data from REDCap Import data from REDCap
109 REDCap server REDCap server
205 Correlation cut-off Correlation cut-off
206 Set the cut-off for considered 'highly correlated'. Set the cut-off for considered 'highly correlated'.
207 Missings Missings
To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random. To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random.
208 Visuals Visuals
209 Analysis validation Analysis validation
210 Report Report
227 You removed {p_out} % of observations. You removed {p_out} % of observations.
228 You removed {p_out} % of variables. You removed {p_out} % of variables.
229 There is a total of {p_miss} % missing observations. There is a total of {p_miss} % missing observations.
There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}. There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}.
230 Data includes {n_pairs} pairs of highly correlated variables. Data includes {n_pairs} pairs of highly correlated variables.
231 Class Class
232 Observations Observations
263 The dataset without text variables The dataset without text variables
264 The data includes {n_col} variables. Please limit to 100. The data includes {n_col} variables. Please limit to 100.
265 Creating the table. Hold on for a moment.. Creating the table. Hold on for a moment..
Select variable to stratify analysis Select variable to stratify analysis
266 Generating the report. Hold on for a moment.. Generating the report. Hold on for a moment..
267 We encountered the following error creating your report: We encountered the following error creating your report:
268 There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data. There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data.
294 Words Words
295 Shorten to first letters Shorten to first letters
296 Shorten to first words Shorten to first words
297 Missings across variables by the variable **'{input$missings_var}'** Missings across variables by the variable **'{input$missings_var}'**
298 Missing vs non-missing observations in the variable **'{input$missings_var}'** Missing vs non-missing observations in the variable **'{input$missings_var}'**
299 Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random. Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.
300 Calculating. Hold tight for a moment.. Calculating. Hold tight for a moment..
301 Overview of missing observations Overview of missing observations
302 Analysis method for missingness overview Analysis method for missingness overview
303 Overview of missings across variables Overview of missings across variables
304 Overview of difference in variables by missing status in outcome Overview of difference in variables by missing status in outcome
305 Select a variable for grouped overview Select a variable for grouped overview
306 Select outcome variable for overview Select outcome variable for overview
307 No outcome measure chosen No outcome measure chosen
308 There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.

View file

@ -150,10 +150,7 @@
"Settings","Settings"
"The following error occured on determining correlations:","The following error occured on determining correlations:"
"We encountered the following error creating your report:","We encountered the following error creating your report:"
"No variable chosen for analysis","No variable chosen for analysis"
"No missing observations","No missing observations"
"Missing vs non-missing observations in the variable **'{variabler()}'**","Missing vs non-missing observations in the variable **'{variabler()}'**"
"There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}.","There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}."
"There is a total of {p_miss} % missing observations.","There is a total of {p_miss} % missing observations."
"Median:","Median:"
"Restore original data","Restore original data"
@ -246,11 +243,9 @@
"Data characteristics table","Data characteristics table"
"The dataset without text variables","The dataset without text variables"
"Creating the table. Hold on for a moment..","Creating the table. Hold on for a moment.."
"Select variable to stratify analysis","Select variable to stratify analysis"
"Generating the report. Hold on for a moment..","Generating the report. Hold on for a moment.."
"We encountered the following error showing missingness:","We encountered the following error showing missingness:"
"We encountered the following error browsing your data:","We encountered the following error browsing your data:"
"To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random.","To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random."
"Choose a name for the column to be created or modified, then enter an expression before clicking on the button below to create the variable, or cancel to exit without saving anything.","Choose a name for the column to be created or modified, then enter an expression before clicking on the button below to create the variable, or cancel to exit without saving anything."
"Other","Other"
"Hour of the day","Hour of the day"
@ -299,3 +294,15 @@
"Words","Words"
"Shorten to first letters","Shorten to first letters"
"Shorten to first words","Shorten to first words"
"Missings across variables by the variable **'{input$missings_var}'**","Missings across variables by the variable **'{input$missings_var}'**"
"Missing vs non-missing observations in the variable **'{input$missings_var}'**","Missing vs non-missing observations in the variable **'{input$missings_var}'**"
"Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.","Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random."
"Calculating. Hold tight for a moment..","Calculating. Hold tight for a moment.."
"Overview of missing observations","Overview of missing observations"
"Analysis method for missingness overview","Analysis method for missingness overview"
"Overview of missings across variables","Overview of missings across variables"
"Overview of difference in variables by missing status in outcome","Overview of difference in variables by missing status in outcome"
"Select a variable for grouped overview","Select a variable for grouped overview"
"Select outcome variable for overview","Select outcome variable for overview"
"No outcome measure chosen","No outcome measure chosen"
"There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.","There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."

1 en sw
150 Settings Settings
151 The following error occured on determining correlations: The following error occured on determining correlations:
152 We encountered the following error creating your report: We encountered the following error creating your report:
No variable chosen for analysis No variable chosen for analysis
153 No missing observations No missing observations
Missing vs non-missing observations in the variable **'{variabler()}'** Missing vs non-missing observations in the variable **'{variabler()}'**
There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}. There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}.
154 There is a total of {p_miss} % missing observations. There is a total of {p_miss} % missing observations.
155 Median: Median:
156 Restore original data Restore original data
243 Data characteristics table Data characteristics table
244 The dataset without text variables The dataset without text variables
245 Creating the table. Hold on for a moment.. Creating the table. Hold on for a moment..
Select variable to stratify analysis Select variable to stratify analysis
246 Generating the report. Hold on for a moment.. Generating the report. Hold on for a moment..
247 We encountered the following error showing missingness: We encountered the following error showing missingness:
248 We encountered the following error browsing your data: We encountered the following error browsing your data:
To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random. To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random.
249 Choose a name for the column to be created or modified, then enter an expression before clicking on the button below to create the variable, or cancel to exit without saving anything. Choose a name for the column to be created or modified, then enter an expression before clicking on the button below to create the variable, or cancel to exit without saving anything.
250 Other Other
251 Hour of the day Hour of the day
294 Words Words
295 Shorten to first letters Shorten to first letters
296 Shorten to first words Shorten to first words
297 Missings across variables by the variable **'{input$missings_var}'** Missings across variables by the variable **'{input$missings_var}'**
298 Missing vs non-missing observations in the variable **'{input$missings_var}'** Missing vs non-missing observations in the variable **'{input$missings_var}'**
299 Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random. Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.
300 Calculating. Hold tight for a moment.. Calculating. Hold tight for a moment..
301 Overview of missing observations Overview of missing observations
302 Analysis method for missingness overview Analysis method for missingness overview
303 Overview of missings across variables Overview of missings across variables
304 Overview of difference in variables by missing status in outcome Overview of difference in variables by missing status in outcome
305 Select a variable for grouped overview Select a variable for grouped overview
306 Select outcome variable for overview Select outcome variable for overview
307 No outcome measure chosen No outcome measure chosen
308 There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.

View file

@ -91,3 +91,12 @@ $(document).on('focus', '.smart-dropdown .selectize-control input', function() {
}
});
// window.addEventListener('beforeunload', function (e) {
// // Cancel the event
// e.preventDefault();
// // Chrome requires returnValue to be set
// e.returnValue = '';
// // Some browsers display this message, others show a generic one
// return 'Are you sure you want to leave? Any unsaved changes will be lost.';
// });

View file

@ -1,7 +1,7 @@
########
#### Current file: /var/folders/9l/xbc19wxx0g79jdd2sf_0v291mhwh7f/T//RtmpejDCIE/filec7541d50b50.R
#### Current file: /var/folders/9l/xbc19wxx0g79jdd2sf_0v291mhwh7f/T//RtmpT9sPX5/file6c8068b55910.R
########
i18n_path <- system.file("translations", package = "FreesearchR")
@ -49,6 +49,7 @@ library(shiny.i18n)
## Translation init
i18n <- shiny.i18n::Translator$new(translation_csvs_path = i18n_path)
# i18n <- shiny.i18n::Translator$new(translation_csvs_path = here::here("inst/translations/"))
i18n$set_translation_language("en")
@ -62,7 +63,7 @@ i18n$set_translation_language("en")
#### Current file: /Users/au301842/FreesearchR/R//app_version.R
########
app_version <- function()'25.12.2'
app_version <- function()'25.12.3'
########
@ -856,8 +857,18 @@ make_choices_with_infos <- function(data) {
#' @importFrom shiny selectizeInput
#' @export
#'
columnSelectInput <- function(inputId, label, data, selected = "", ...,
col_subset = NULL, placeholder = "", onInitialize, none_label="No variable selected",maxItems=NULL) {
columnSelectInput <- function(
inputId,
label,
data,
selected = "",
...,
col_subset = NULL,
placeholder = "",
onInitialize,
none_label = "No variable selected",
maxItems = NULL
) {
datar <- if (is.reactive(data)) data else reactive(data)
col_subsetr <- if (is.reactive(col_subset)) col_subset else reactive(col_subset)
@ -877,8 +888,8 @@ columnSelectInput <- function(inputId, label, data, selected = "", ...,
)
}, col = names(datar()))
if (!"none" %in% names(datar())){
labels <- c("none"=list(sprintf('\n {\n \"name\": \"none\",\n \"label\": \"%s\",\n \"dataclass\": \"\",\n \"datatype\": \"\"\n }',none_label)),labels)
if (!"none" %in% names(datar())) {
labels <- c("none" = list(sprintf('\n {\n \"name\": \"none\",\n \"label\": \"%s\",\n \"dataclass\": \"\",\n \"datatype\": \"\"\n }', none_label)), labels)
choices <- setNames(names(labels), labels)
choices <- choices[match(if (length(col_subsetr()) == 0 || isTRUE(col_subsetr() == "")) names(datar()) else col_subsetr(), choices)]
} else {
@ -922,7 +933,7 @@ columnSelectInput <- function(inputId, label, data, selected = "", ...,
'</div>';
}
}")),
if (!is.null(maxItems)) list(maxItems=maxItems)
if (!is.null(maxItems)) list(maxItems = maxItems)
)
)
}
@ -943,31 +954,31 @@ columnSelectInput <- function(inputId, label, data, selected = "", ...,
#'
#' @examples
#' if (shiny::interactive()) {
#' shinyApp(
#' ui = fluidPage(
#' shiny::uiOutput("select"),
#' tableOutput("data")
#' ),
#' server = function(input, output) {
#' output$select <- shiny::renderUI({
#' vectorSelectInput(
#' inputId = "variable", label = "Variable:",
#' data = c(
#' "Cylinders" = "cyl",
#' "Transmission" = "am",
#' "Gears" = "gear"
#' shinyApp(
#' ui = fluidPage(
#' shiny::uiOutput("select"),
#' tableOutput("data")
#' ),
#' server = function(input, output) {
#' output$select <- shiny::renderUI({
#' vectorSelectInput(
#' inputId = "variable", label = "Variable:",
#' data = c(
#' "Cylinders" = "cyl",
#' "Transmission" = "am",
#' "Gears" = "gear"
#' )
#' )
#' )
#' })
#' })
#'
#' output$data <- renderTable(
#' {
#' mtcars[, c("mpg", input$variable), drop = FALSE]
#' },
#' rownames = TRUE
#' )
#' }
#' )
#' output$data <- renderTable(
#' {
#' mtcars[, c("mpg", input$variable), drop = FALSE]
#' },
#' rownames = TRUE
#' )
#' }
#' )
#' }
vectorSelectInput <- function(inputId,
label,
@ -1022,8 +1033,6 @@ vectorSelectInput <- function(inputId,
}
########
#### Current file: /Users/au301842/FreesearchR/R//cut_var.R
########
@ -2662,7 +2671,7 @@ create_plot <- function(data, type, pri, sec, ter = NULL, ...) {
out
}
#' Print label, and if missing print variable name
#' Print label, and if missing print variable name for plots
#'
#' @param data vector or data frame
#' @param var variable name. Optional.
@ -4429,7 +4438,7 @@ data_types <- function() {
#### Current file: /Users/au301842/FreesearchR/R//hosted_version.R
########
hosted_version <- function()'v25.12.2-251203'
hosted_version <- function()'v25.12.3-251211'
########
@ -5521,18 +5530,46 @@ launch_FreesearchR <- function(...){
#' Data correlations evaluation module
#'
#' @param id Module id
#' @param ... additional UI elements to show before the table overview
#'
#' @name data-missings
#' @returns Shiny ui module
#' @export
data_missings_ui <- function(id) {
data_missings_ui <- function(id, ...) {
ns <- shiny::NS(id)
shiny::tagList(
gt::gt_output(outputId = ns("missings_table"))
list(
bslib::layout_sidebar(
sidebar = bslib::sidebar(
bslib::accordion(
id = ns("acc_mis"),
open = "acc_chars",
multiple = FALSE,
bslib::accordion_panel(
value = "acc_pan_mis",
title = "Settings",
icon = bsicons::bs_icon("x-circle"),
shiny::uiOutput(ns("missings_method")),
shiny::uiOutput(ns("missings_var")),
shiny::helpText(i18n$t("Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.")),
shiny::br(),
shiny::actionButton(
inputId = ns("act_miss"),
label = i18n$t("Evaluate"),
width = "100%",
icon = shiny::icon("calculator"),
disabled = FALSE
)
)
)
),
...,
gt::gt_output(outputId = ns("missings_table"))
)
)
}
## This should really just be rebuild to only contain a function
#'
#' @param data data
@ -5543,108 +5580,200 @@ data_missings_ui <- function(id) {
#' @export
data_missings_server <- function(id,
data,
variable,
max_level=20,
max_level = 20,
...) {
shiny::moduleServer(
id = id,
module = function(input, output, session) {
# ns <- session$ns
ns <- session$ns
datar <- if (is.reactive(data)) data else reactive(data)
variabler <- if (is.reactive(variable)) variable else reactive(variable)
rv <- shiny::reactiveValues(
data = NULL,
table = NULL
)
rv$data <- shiny::reactive({
df_tbl <- datar()
by_var <- variabler()
## Notes
##
## Code export is still missing
## Direct table export would be nice
tryCatch(
{
out <- compare_missings(df_tbl,by_var,max_level = max_level)
},
error = function(err) {
showNotification(paste0("Error: ", err), type = "err")
}
)
shiny::observe(
output$missings_method <- shiny::renderUI({
shiny::req(data())
vectorSelectInput(
inputId = ns("missings_method"),
label = i18n$t("Analysis method for missingness overview"),
choices = setNames(
c(
"predictors",
"outcome"
),
c(
i18n$t("Overview of missings across variables"),
i18n$t("Overview of difference in variables by missing status in outcome")
)
)
)
})
)
out
})
output$missings_table <- gt::render_gt({
shiny::req(datar)
shiny::req(variabler)
if (is.null(variabler()) || variabler() == "" || !variabler() %in% names(datar())) {
tbl <- rv$data()
if (anyNA(datar())){
title <- i18n$t("No variable chosen for analysis")
shiny::observe({
output$missings_var <- shiny::renderUI({
shiny::req(datar())
shiny::req(input$missings_method)
# browser()
if (input$missings_method == "predictors") {
label <- i18n$t("Select a variable for grouped overview")
df <- data_type_filter(data(), type = c("categorical", "dichotomous"))
col_subset <- c("none", names(df))
} else {
title <- i18n$t("No missing observations")
label <- i18n$t("Select outcome variable for overview")
df <- datar()[apply(datar(), 2, anyNA)]
col_subset <- names(df)
}
} else {
tbl <- rv$data()|>
gtsummary::bold_p()
title <- glue::glue(i18n$t("Missing vs non-missing observations in the variable **'{variabler()}'**"))
}
out <- tbl |>
gtsummary::as_gt() |>
gt::tab_header(title = gt::md(title))
rv$table <- out
out
columnSelectInput(
inputId = ns("missings_var"),
label = label,
data = df,
col_subset = col_subset,
none_label = i18n$t("No variable")
)
})
})
return(reactive(rv$table))
shiny::observeEvent(
list(input$act_miss),
{
shiny::req(datar())
shiny::req(input$missings_var)
# browser()
df_tbl <- datar()
by_var <- input$missings_var
parameters <- list(
by_var = by_var,
max_level = max_level,
type = input$missings_method
)
tryCatch(
{
shiny::withProgress(message = i18n$t("Calculating. Hold tight for a moment.."), {
out <- do.call(
compare_missings,
modifyList(parameters, list(data = df_tbl))
)
})
},
error = function(err) {
showNotification(paste0("Error: ", err), type = "err")
}
)
if (is.null(input$missings_var) || input$missings_var == "" || !input$missings_var %in% names(datar()) || input$missings_var == "none") {
# if (is.null(variabler()) || variabler() == "" || !variabler() %in% names(data()) || variabler() == "none") {
# tbl <- rv$data()
if (anyNA(datar())) {
if (input$missings_method == "predictors") {
title <- i18n$t("Overview of missing observations")
} else {
title <- i18n$t("No outcome measure chosen")
}
} else {
title <- i18n$t("No missing observations")
}
} else {
## Due to reactivity, the table updates too quickly. this mitigates that issue..
if (input$missings_var == "predictors") {
title <- glue::glue(i18n$t("Missings across variables by the variable **'{input$missings_var}'**"))
} else {
title <- glue::glue(i18n$t("Missing vs non-missing observations in the variable **'{input$missings_var}'**"))
}
}
attr(out, "tbl_title") <- title
rv$data <- shiny::reactive(out)
}
)
shiny::observeEvent(
list(
# input$act_miss
rv$data
),
{
output$missings_table <- gt::render_gt({
shiny::req(rv$data)
# shiny::req(input$missings_var)
# browser()
if ("p.value" %in% names(rv$data()[["table_body"]])) {
tbl <- rv$data() |>
gtsummary::bold_p()
} else {
tbl <- rv$data()
}
out <- tbl |>
gtsummary::as_gt() |>
gt::tab_header(title = gt::md(attr(tbl, "tbl_title")))
attr(out, "strat_var") <- input$missings_var
rv$table <- out
out
})
}
)
return(shiny::reactive(rv$table))
}
)
}
missing_demo_app <- function() {
ui <- shiny::fluidPage(
shiny::actionButton(
inputId = "modal_missings",
label = "Browse data",
width = "100%",
disabled = FALSE
),
shiny::selectInput(
inputId = "missings_var",
label = "Select variable to stratify analysis", choices = c("cyl", "vs")
),
data_missings_ui("data")
ui <- do.call(
bslib::page,
c(
list(
title = i18n$t("Missings"),
icon = bsicons::bs_icon("x-circle")
),
data_missings_ui(id = "data")
)
)
server <- function(input, output, session) {
data_demo <- mtcars
data_demo[sample(1:32, 10), "cyl"] <- NA
data_demo[sample(1:32, 8), "vs"] <- NA
data_missings_server(id = "data", data = data_demo, variable = shiny::reactive(input$missings_var))
data_missings_server(id = "data", data = data_demo)
visual_summary_server(id = "visual", data = data_demo)
# visual_summary_server(id = "visual", data = data_demo)
observeEvent(input$modal_missings, {
tryCatch(
{
modal_visual_summary(id = "visual")
},
error = function(err) {
showNotification(paste0("We encountered the following error browsing your data: ", err), type = "err")
}
)
})
# observeEvent(input$modal_missings, {
# tryCatch(
# {
# modal_visual_summary(id = "visual")
# },
# error = function(err) {
# showNotification(paste0("We encountered the following error browsing your data: ", err), type = "err")
# }
# )
# })
}
shiny::shinyApp(ui, server)
}
missing_demo_app()
# missing_demo_app()
#' Pairwise comparison of missings across covariables
#'
@ -5654,28 +5783,80 @@ missing_demo_app()
#' @returns gtsummary list object
#' @export
#'
compare_missings <- function(data,by_var,max_level=20){
compare_missings <- function(
data,
by_var,
max_level = 20,
type = c("predictors", "outcome")
) {
type <- match.arg(type)
if (!is.null(by_var) && by_var != "" && by_var %in% names(data)) {
data <- data |>
lapply(\(.x){
# browser()
if (is.factor(.x)){
cut_var(.x,breaks=20,type="top")
if (is.factor(.x)) {
cut_var(.x, breaks = 20, type = "top")
} else {
.x
}
}) |> dplyr::bind_cols()
}) |>
dplyr::bind_cols()
data[[by_var]] <- ifelse(is.na(data[[by_var]]), "Missing", "Non-missing")
if (type == "predictors") {
data <- missings_logic_across(data, exclude = by_var)
} else {
data[[by_var]] <- ifelse(is.na(data[[by_var]]), "Missing", "Non-missing")
}
out <- gtsummary::tbl_summary(data, by = by_var) |>
gtsummary::add_p()
} else {
if (type == "predictors") {
data <- missings_logic_across(data)
}
out <- gtsummary::tbl_summary(data)
}
out
}
#' Converting all variables to logicals by missing status
#'
#' @param data data
#' @param exclude character vector of variable names to be excluded
#'
#' @returns data frame
#' @export
#'
#' @examples
#' mtcars |> missings_logic_across("cyl")
#' ## gtsummary::trial |>
#' ## missings_logic_across() |>
#' ## gtsummary::tbl_summary()
missings_logic_across <- function(data, exclude = NULL) {
# This function includes a approach way to preserve variable labels
names(data) |>
lapply(\(.x){
# browser()
# Saving original labels
lab <- REDCapCAST::get_attr(data[[.x]], attr = "label")
if (!.x %in% exclude) {
out <- is.na(data[[.x]])
} else {
out <- data[[.x]]
}
if (!is.na(lab)) {
# Restoring original labels, if not NA
REDCapCAST::set_attr(data = out, label = lab, attr = "label", overwrite = TRUE)
} else {
out
}
}) |>
dplyr::bind_cols(.name_repair = "unique_quiet") |>
setNames(names(data))
}
########
#### Current file: /Users/au301842/FreesearchR/R//plot_bar.R
@ -10156,26 +10337,15 @@ ui_elements <- function(selection) {
data_correlations_ui(id = "correlations", height = 600)
)
),
bslib::nav_panel(
title = i18n$t("Missings"),
icon = bsicons::bs_icon("x-circle"),
bslib::layout_sidebar(
sidebar = bslib::sidebar(
bslib::accordion(
id = "acc_mis",
open = "acc_chars",
multiple = FALSE,
bslib::accordion_panel(
value = "acc_pan_mis",
title = "Settings",
icon = bsicons::bs_icon("x-circle"),
shiny::uiOutput("missings_var"),
shiny::helpText(i18n$t("To consider if data is missing by random, choose the outcome/dependent variable (only variables with any missings are available). If there is a significant difference across other variables depending on missing observations, it may not be missing at random."))
)
)
do.call(
bslib::nav_panel,
c(
list(
title = i18n$t("Missings"),
icon = bsicons::bs_icon("x-circle")
),
validation_ui("validation_mcar"),
data_missings_ui(id = "missingness")
data_missings_ui(id = "missingness",
validation_ui("validation_mcar"))
)
)
),
@ -11438,7 +11608,7 @@ convert_to <- function(data,
#' Get variable(s) to convert
#'
#' @param vars Output of [summary_vars()]
#' @param vars variables, output from summary_vars() function
#' @param classes_input List of inputs containing new classes
#'
#' @return a `data.table`.
@ -11671,6 +11841,9 @@ validation_server <- function(id,
purrr::list_flatten()
} else if (length(to_validate) > 0) {
out <- make_validation_alerts(to_validate)
} else {
## Defaulting to an emptu output vector
out <- character()
}
valid_ui$x <- tagList(out)
}
@ -11894,7 +12067,7 @@ validation_lib <- function(name = NULL) {
"mcar" = function(x, y) {
### Placeholder for missingness validation
list(
string = i18n$t("There is a significant correlation between {n_nonmcar} variables and missing observations in the outcome variable {outcome}."),
string = i18n$t("There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."),
summary.fun = mcar_validate,
summary.fun.args = list(
data = x,
@ -12923,6 +13096,7 @@ server <- function(input, output, session) {
shiny::updateActionButton(inputId = "modal_browse", disabled = TRUE)
shiny::updateActionButton(inputId = "modal_visual_overview", disabled = TRUE)
shiny::updateActionButton(inputId = "act_eval", disabled = TRUE)
# shiny::updateActionButton(inputId = "act_miss", disabled = TRUE)
# bslib::nav_hide(id = "main_panel",
# target = "nav_visuals")
@ -12931,6 +13105,7 @@ server <- function(input, output, session) {
shiny::updateActionButton(inputId = "modal_browse", disabled = FALSE)
shiny::updateActionButton(inputId = "modal_visual_overview", disabled = FALSE)
shiny::updateActionButton(inputId = "act_eval", disabled = FALSE)
# shiny::updateActionButton(inputId = "act_miss", disabled = FALSE)
# bslib::nav_show(id = "main_panel",
# target = "nav_visuals")
@ -12946,7 +13121,6 @@ server <- function(input, output, session) {
})
##############################################################################
#########
######### Data modification section
@ -13185,12 +13359,13 @@ server <- function(input, output, session) {
# mcar_validate(data=rv$missings()[["_data"]],outcome = input$missings_var)
if (!is.null(rv$missings())) {
req(rv$missings())
req(input$missings_var)
# req(input$missings_var)
# browser()
rv_validations$mcar <- make_validation(
ls = validation_lib("mcar"),
list(
x = rv$missings()[["_data"]],
y = input$missings_var
y = attr(rv$missings(), "strat_var")
)
)
}
@ -13523,8 +13698,6 @@ server <- function(input, output, session) {
# })
shiny::observeEvent(
list(
input$act_eval
@ -13536,7 +13709,6 @@ server <- function(input, output, session) {
shiny::req(rv$list$data)
parameters <- list(
by.var = input$strat_var,
add.p = input$add_p == "yes",
@ -13617,25 +13789,16 @@ server <- function(input, output, session) {
cutoff = shiny::reactive(input$cor_cutoff)
)
shiny::observe(
output$missings_var <- shiny::renderUI({
columnSelectInput(
inputId = "missings_var",
label = i18n$t("Select variable to stratify analysis"),
data = shiny::reactive({
shiny::req(rv$data_filtered)
rv$data_filtered[apply(rv$data_filtered, 2, anyNA)]
})()
)
})
)
## Missingness evaluation
rv$missings <- data_missings_server(
id = "missingness",
data = shiny::reactive(rv$data_filtered),
variable = shiny::reactive(input$missings_var)
data = shiny::reactive(rv$data_filtered)
)
# shiny::observe({
# req(rv$missings())
# browser()

View file

@ -91,3 +91,12 @@ $(document).on('focus', '.smart-dropdown .selectize-control input', function() {
}
});
// window.addEventListener('beforeunload', function (e) {
// // Cancel the event
// e.preventDefault();
// // Chrome requires returnValue to be set
// e.returnValue = '';
// // Some browsers display this message, others show a generic one
// return 'Are you sure you want to leave? Any unsaved changes will be lost.';
// });

View file

@ -91,3 +91,12 @@ $(document).on('focus', '.smart-dropdown .selectize-control input', function() {
}
});
// window.addEventListener('beforeunload', function (e) {
// // Cancel the event
// e.preventDefault();
// // Chrome requires returnValue to be set
// e.returnValue = '';
// // Some browsers display this message, others show a generic one
// return 'Are you sure you want to leave? Any unsaved changes will be lost.';
// });

View file

@ -150,7 +150,6 @@
"Settings","Indstillinger"
"The following error occured on determining correlations:","Følgende fejl opstod i forbindelse med korrelationsanalysen:"
"We encountered the following error creating your report:","Følgende fejl opstod, da rapporten blev dannet:"
"No variable chosen for analysis","Ingen variabel er valgt til analysen"
"No missing observations","Ingen manglende observationer"
"There is a total of {p_miss} % missing observations.","Der er i alt {p_miss} % manglende observationer."
"Median:","Median:"
@ -244,7 +243,6 @@
"Data characteristics table","Oversigtstabel"
"The dataset without text variables","Datasættet uden variabler formateret som tekst"
"Creating the table. Hold on for a moment..","Opretter tabellen. Vent et øjeblik.."
"Select variable to stratify analysis","Vælg variabler til at stratificere analysen"
"Generating the report. Hold on for a moment..","Opretter rapporten. Vent et øjeblik.."
"We encountered the following error showing missingness:","Under analysen af manglende observationer opstod følgende fejl:"
"We encountered the following error browsing your data:","I forsøget på at vise en dataoversigt opstod følgende fejl:"
@ -296,11 +294,15 @@
"Words","Words"
"Shorten to first letters","Shorten to first letters"
"Shorten to first words","Shorten to first words"
"Select missings analysis to apply","Select missings analysis to apply"
"Variables","Variables"
"By outcome","By outcome"
"Missings across variables by the variable **'{input$missings_var}'**","Missings across variables by the variable **'{input$missings_var}'**"
"Missing vs non-missing observations in the variable **'{input$missings_var}'**","Missing vs non-missing observations in the variable **'{input$missings_var}'**"
"Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.","Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random."
"Calculating. Hold tight for a moment..","Calculating. Hold tight for a moment.."
"There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.","There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."
"Overview of missing observations","Overview of missing observations"
"Analysis method for missingness overview","Analysis method for missingness overview"
"Overview of missings across variables","Overview of missings across variables"
"Overview of difference in variables by missing status in outcome","Overview of difference in variables by missing status in outcome"
"Select a variable for grouped overview","Select a variable for grouped overview"
"Select outcome variable for overview","Select outcome variable for overview"
"No outcome measure chosen","No outcome measure chosen"
"There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.","There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."

1 en da
150 Settings Indstillinger
151 The following error occured on determining correlations: Følgende fejl opstod i forbindelse med korrelationsanalysen:
152 We encountered the following error creating your report: Følgende fejl opstod, da rapporten blev dannet:
No variable chosen for analysis Ingen variabel er valgt til analysen
153 No missing observations Ingen manglende observationer
154 There is a total of {p_miss} % missing observations. Der er i alt {p_miss} % manglende observationer.
155 Median: Median:
243 Data characteristics table Oversigtstabel
244 The dataset without text variables Datasættet uden variabler formateret som tekst
245 Creating the table. Hold on for a moment.. Opretter tabellen. Vent et øjeblik..
Select variable to stratify analysis Vælg variabler til at stratificere analysen
246 Generating the report. Hold on for a moment.. Opretter rapporten. Vent et øjeblik..
247 We encountered the following error showing missingness: Under analysen af manglende observationer opstod følgende fejl:
248 We encountered the following error browsing your data: I forsøget på at vise en dataoversigt opstod følgende fejl:
294 Words Words
295 Shorten to first letters Shorten to first letters
296 Shorten to first words Shorten to first words
Select missings analysis to apply Select missings analysis to apply
Variables Variables
By outcome By outcome
297 Missings across variables by the variable **'{input$missings_var}'** Missings across variables by the variable **'{input$missings_var}'**
298 Missing vs non-missing observations in the variable **'{input$missings_var}'** Missing vs non-missing observations in the variable **'{input$missings_var}'**
299 Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random. Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.
300 Calculating. Hold tight for a moment.. Calculating. Hold tight for a moment..
301 There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. Overview of missing observations There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. Overview of missing observations
302 Analysis method for missingness overview Analysis method for missingness overview
303 Overview of missings across variables Overview of missings across variables
304 Overview of difference in variables by missing status in outcome Overview of difference in variables by missing status in outcome
305 Select a variable for grouped overview Select a variable for grouped overview
306 Select outcome variable for overview Select outcome variable for overview
307 No outcome measure chosen No outcome measure chosen
308 There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.

View file

@ -103,7 +103,6 @@
"You can choose between these file types:","You can choose between these file types:"
"You can import {file_extensions_text} files","You can import {file_extensions_text} files"
"First five rows are shown below:","First five rows are shown below:"
"No variable chosen for analysis","No variable chosen for analysis"
"No missing observations","No missing observations"
"Grouped by {get_label(data,ter)}","Grouped by {get_label(data,ter)}"
"Import data from REDCap","Import data from REDCap"
@ -264,7 +263,6 @@
"The dataset without text variables","The dataset without text variables"
"The data includes {n_col} variables. Please limit to 100.","The data includes {n_col} variables. Please limit to 100."
"Creating the table. Hold on for a moment..","Creating the table. Hold on for a moment.."
"Select variable to stratify analysis","Select variable to stratify analysis"
"Generating the report. Hold on for a moment..","Generating the report. Hold on for a moment.."
"We encountered the following error creating your report:","We encountered the following error creating your report:"
"There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data.","There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data."
@ -296,11 +294,15 @@
"Words","Words"
"Shorten to first letters","Shorten to first letters"
"Shorten to first words","Shorten to first words"
"Select missings analysis to apply","Select missings analysis to apply"
"Variables","Variables"
"By outcome","By outcome"
"Missings across variables by the variable **'{input$missings_var}'**","Missings across variables by the variable **'{input$missings_var}'**"
"Missing vs non-missing observations in the variable **'{input$missings_var}'**","Missing vs non-missing observations in the variable **'{input$missings_var}'**"
"Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.","Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random."
"Calculating. Hold tight for a moment..","Calculating. Hold tight for a moment.."
"There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.","There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."
"Overview of missing observations","Overview of missing observations"
"Analysis method for missingness overview","Analysis method for missingness overview"
"Overview of missings across variables","Overview of missings across variables"
"Overview of difference in variables by missing status in outcome","Overview of difference in variables by missing status in outcome"
"Select a variable for grouped overview","Select a variable for grouped overview"
"Select outcome variable for overview","Select outcome variable for overview"
"No outcome measure chosen","No outcome measure chosen"
"There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.","There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."

1 en de
103 You can choose between these file types: You can choose between these file types:
104 You can import {file_extensions_text} files You can import {file_extensions_text} files
105 First five rows are shown below: First five rows are shown below:
No variable chosen for analysis No variable chosen for analysis
106 No missing observations No missing observations
107 Grouped by {get_label(data,ter)} Grouped by {get_label(data,ter)}
108 Import data from REDCap Import data from REDCap
263 The dataset without text variables The dataset without text variables
264 The data includes {n_col} variables. Please limit to 100. The data includes {n_col} variables. Please limit to 100.
265 Creating the table. Hold on for a moment.. Creating the table. Hold on for a moment..
Select variable to stratify analysis Select variable to stratify analysis
266 Generating the report. Hold on for a moment.. Generating the report. Hold on for a moment..
267 We encountered the following error creating your report: We encountered the following error creating your report:
268 There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data. There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data.
294 Words Words
295 Shorten to first letters Shorten to first letters
296 Shorten to first words Shorten to first words
Select missings analysis to apply Select missings analysis to apply
Variables Variables
By outcome By outcome
297 Missings across variables by the variable **'{input$missings_var}'** Missings across variables by the variable **'{input$missings_var}'**
298 Missing vs non-missing observations in the variable **'{input$missings_var}'** Missing vs non-missing observations in the variable **'{input$missings_var}'**
299 Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random. Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.
300 Calculating. Hold tight for a moment.. Calculating. Hold tight for a moment..
301 There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. Overview of missing observations There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. Overview of missing observations
302 Analysis method for missingness overview Analysis method for missingness overview
303 Overview of missings across variables Overview of missings across variables
304 Overview of difference in variables by missing status in outcome Overview of difference in variables by missing status in outcome
305 Select a variable for grouped overview Select a variable for grouped overview
306 Select outcome variable for overview Select outcome variable for overview
307 No outcome measure chosen No outcome measure chosen
308 There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.

View file

@ -103,7 +103,6 @@
"You can choose between these file types:","You can choose between these file types:"
"You can import {file_extensions_text} files","You can import {file_extensions_text} files"
"First five rows are shown below:","First five rows are shown below:"
"No variable chosen for analysis","No variable chosen for analysis"
"No missing observations","No missing observations"
"Grouped by {get_label(data,ter)}","Grouped by {get_label(data,ter)}"
"Import data from REDCap","Import data from REDCap"
@ -264,7 +263,6 @@
"The dataset without text variables","The dataset without text variables"
"The data includes {n_col} variables. Please limit to 100.","The data includes {n_col} variables. Please limit to 100."
"Creating the table. Hold on for a moment..","Creating the table. Hold on for a moment.."
"Select variable to stratify analysis","Select variable to stratify analysis"
"Generating the report. Hold on for a moment..","Generating the report. Hold on for a moment.."
"We encountered the following error creating your report:","We encountered the following error creating your report:"
"There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data.","There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data."
@ -296,11 +294,15 @@
"Words","Words"
"Shorten to first letters","Shorten to first letters"
"Shorten to first words","Shorten to first words"
"Select missings analysis to apply","Select missings analysis to apply"
"Variables","Variables"
"By outcome","By outcome"
"Missings across variables by the variable **'{input$missings_var}'**","Missings across variables by the variable **'{input$missings_var}'**"
"Missing vs non-missing observations in the variable **'{input$missings_var}'**","Missing vs non-missing observations in the variable **'{input$missings_var}'**"
"Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.","Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random."
"Calculating. Hold tight for a moment..","Calculating. Hold tight for a moment.."
"There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.","There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."
"Overview of missing observations","Overview of missing observations"
"Analysis method for missingness overview","Analysis method for missingness overview"
"Overview of missings across variables","Overview of missings across variables"
"Overview of difference in variables by missing status in outcome","Overview of difference in variables by missing status in outcome"
"Select a variable for grouped overview","Select a variable for grouped overview"
"Select outcome variable for overview","Select outcome variable for overview"
"No outcome measure chosen","No outcome measure chosen"
"There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.","There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."

1 en sv
103 You can choose between these file types: You can choose between these file types:
104 You can import {file_extensions_text} files You can import {file_extensions_text} files
105 First five rows are shown below: First five rows are shown below:
No variable chosen for analysis No variable chosen for analysis
106 No missing observations No missing observations
107 Grouped by {get_label(data,ter)} Grouped by {get_label(data,ter)}
108 Import data from REDCap Import data from REDCap
263 The dataset without text variables The dataset without text variables
264 The data includes {n_col} variables. Please limit to 100. The data includes {n_col} variables. Please limit to 100.
265 Creating the table. Hold on for a moment.. Creating the table. Hold on for a moment..
Select variable to stratify analysis Select variable to stratify analysis
266 Generating the report. Hold on for a moment.. Generating the report. Hold on for a moment..
267 We encountered the following error creating your report: We encountered the following error creating your report:
268 There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data. There are more advanced options to modify factor/categorical variables as well as create new factor from an existing variable or new variables with R code. At the bottom you can restore the original data.
294 Words Words
295 Shorten to first letters Shorten to first letters
296 Shorten to first words Shorten to first words
Select missings analysis to apply Select missings analysis to apply
Variables Variables
By outcome By outcome
297 Missings across variables by the variable **'{input$missings_var}'** Missings across variables by the variable **'{input$missings_var}'**
298 Missing vs non-missing observations in the variable **'{input$missings_var}'** Missing vs non-missing observations in the variable **'{input$missings_var}'**
299 Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random. Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.
300 Calculating. Hold tight for a moment.. Calculating. Hold tight for a moment..
301 There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. Overview of missing observations There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. Overview of missing observations
302 Analysis method for missingness overview Analysis method for missingness overview
303 Overview of missings across variables Overview of missings across variables
304 Overview of difference in variables by missing status in outcome Overview of difference in variables by missing status in outcome
305 Select a variable for grouped overview Select a variable for grouped overview
306 Select outcome variable for overview Select outcome variable for overview
307 No outcome measure chosen No outcome measure chosen
308 There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.

View file

@ -150,7 +150,6 @@
"Settings","Settings"
"The following error occured on determining correlations:","The following error occured on determining correlations:"
"We encountered the following error creating your report:","We encountered the following error creating your report:"
"No variable chosen for analysis","No variable chosen for analysis"
"No missing observations","No missing observations"
"There is a total of {p_miss} % missing observations.","There is a total of {p_miss} % missing observations."
"Median:","Median:"
@ -244,7 +243,6 @@
"Data characteristics table","Data characteristics table"
"The dataset without text variables","The dataset without text variables"
"Creating the table. Hold on for a moment..","Creating the table. Hold on for a moment.."
"Select variable to stratify analysis","Select variable to stratify analysis"
"Generating the report. Hold on for a moment..","Generating the report. Hold on for a moment.."
"We encountered the following error showing missingness:","We encountered the following error showing missingness:"
"We encountered the following error browsing your data:","We encountered the following error browsing your data:"
@ -296,11 +294,15 @@
"Words","Words"
"Shorten to first letters","Shorten to first letters"
"Shorten to first words","Shorten to first words"
"Select missings analysis to apply","Select missings analysis to apply"
"Variables","Variables"
"By outcome","By outcome"
"Missings across variables by the variable **'{input$missings_var}'**","Missings across variables by the variable **'{input$missings_var}'**"
"Missing vs non-missing observations in the variable **'{input$missings_var}'**","Missing vs non-missing observations in the variable **'{input$missings_var}'**"
"Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.","Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random."
"Calculating. Hold tight for a moment..","Calculating. Hold tight for a moment.."
"There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.","There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."
"Overview of missing observations","Overview of missing observations"
"Analysis method for missingness overview","Analysis method for missingness overview"
"Overview of missings across variables","Overview of missings across variables"
"Overview of difference in variables by missing status in outcome","Overview of difference in variables by missing status in outcome"
"Select a variable for grouped overview","Select a variable for grouped overview"
"Select outcome variable for overview","Select outcome variable for overview"
"No outcome measure chosen","No outcome measure chosen"
"There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.","There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}."

1 en sw
150 Settings Settings
151 The following error occured on determining correlations: The following error occured on determining correlations:
152 We encountered the following error creating your report: We encountered the following error creating your report:
No variable chosen for analysis No variable chosen for analysis
153 No missing observations No missing observations
154 There is a total of {p_miss} % missing observations. There is a total of {p_miss} % missing observations.
155 Median: Median:
243 Data characteristics table Data characteristics table
244 The dataset without text variables The dataset without text variables
245 Creating the table. Hold on for a moment.. Creating the table. Hold on for a moment..
Select variable to stratify analysis Select variable to stratify analysis
246 Generating the report. Hold on for a moment.. Generating the report. Hold on for a moment..
247 We encountered the following error showing missingness: We encountered the following error showing missingness:
248 We encountered the following error browsing your data: We encountered the following error browsing your data:
294 Words Words
295 Shorten to first letters Shorten to first letters
296 Shorten to first words Shorten to first words
Select missings analysis to apply Select missings analysis to apply
Variables Variables
By outcome By outcome
297 Missings across variables by the variable **'{input$missings_var}'** Missings across variables by the variable **'{input$missings_var}'**
298 Missing vs non-missing observations in the variable **'{input$missings_var}'** Missing vs non-missing observations in the variable **'{input$missings_var}'**
299 Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random. Evaluate missingness by either comparing missing values across variables (optionally grouped by af categorical or dichotomous variable) or compare variables grouped by the missing status (missing or not) of an outcome variable. If there is a significant difference i the missingness, this may cause a bias in you data and should be considered carefully interpreting the data and analyses as data may not be missing at random.
300 Calculating. Hold tight for a moment.. Calculating. Hold tight for a moment..
301 There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. Overview of missing observations There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nnonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. Overview of missing observations
302 Analysis method for missingness overview Analysis method for missingness overview
303 Overview of missings across variables Overview of missings across variables
304 Overview of difference in variables by missing status in outcome Overview of difference in variables by missing status in outcome
305 Select a variable for grouped overview Select a variable for grouped overview
306 Select outcome variable for overview Select outcome variable for overview
307 No outcome measure chosen No outcome measure chosen
308 There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}. There is a significant difference in data missingness in {n_nonmcar} {ifelse(n_nonmcar==1,'variable','variables')} grouped by the selected outcome/grouping variable {outcome}.

View file

@ -9154,6 +9154,52 @@
"Maintainer": "Davis Vaughan <davis@posit.co>",
"Repository": "CRAN"
},
"viridis": {
"Package": "viridis",
"Version": "0.6.5",
"Source": "Repository",
"Type": "Package",
"Title": "Colorblind-Friendly Color Maps for R",
"Date": "2024-01-28",
"Authors@R": "c( person(\"Simon\", \"Garnier\", email = \"garnier@njit.edu\", role = c(\"aut\", \"cre\")), person(\"Noam\", \"Ross\", email = \"noam.ross@gmail.com\", role = c(\"ctb\", \"cph\")), person(\"Bob\", \"Rudis\", email = \"bob@rud.is\", role = c(\"ctb\", \"cph\")), person(\"Marco\", \"Sciaini\", email = \"sciaini.marco@gmail.com\", role = c(\"ctb\", \"cph\")), person(\"Antônio Pedro\", \"Camargo\", role = c(\"ctb\", \"cph\")), person(\"Cédric\", \"Scherer\", email = \"scherer@izw-berlin.de\", role = c(\"ctb\", \"cph\")) )",
"Maintainer": "Simon Garnier <garnier@njit.edu>",
"Description": "Color maps designed to improve graph readability for readers with common forms of color blindness and/or color vision deficiency. The color maps are also perceptually-uniform, both in regular form and also when converted to black-and-white for printing. This package also contains 'ggplot2' bindings for discrete and continuous color and fill scales. A lean version of the package called 'viridisLite' that does not include the 'ggplot2' bindings can be found at <https://cran.r-project.org/package=viridisLite>.",
"License": "MIT + file LICENSE",
"Encoding": "UTF-8",
"Depends": [
"R (>= 2.10)",
"viridisLite (>= 0.4.0)"
],
"Imports": [
"ggplot2 (>= 1.0.1)",
"gridExtra"
],
"Suggests": [
"hexbin (>= 1.27.0)",
"scales",
"MASS",
"knitr",
"dichromat",
"colorspace",
"httr",
"mapproj",
"vdiffr",
"svglite (>= 1.2.0)",
"testthat",
"covr",
"rmarkdown",
"maps",
"terra"
],
"LazyData": "true",
"VignetteBuilder": "knitr",
"URL": "https://sjmgarnier.github.io/viridis/, https://github.com/sjmgarnier/viridis/",
"BugReports": "https://github.com/sjmgarnier/viridis/issues",
"RoxygenNote": "7.3.1",
"NeedsCompilation": "no",
"Author": "Simon Garnier [aut, cre], Noam Ross [ctb, cph], Bob Rudis [ctb, cph], Marco Sciaini [ctb, cph], Antônio Pedro Camargo [ctb, cph], Cédric Scherer [ctb, cph]",
"Repository": "CRAN"
},
"viridisLite": {
"Package": "viridisLite",
"Version": "0.4.2",