mirror of
https://github.com/agdamsbo/FreesearchR.git
synced 2025-09-12 01:49:39 +02:00
modifications to ui and using DT for tables
This commit is contained in:
parent
c06d887c24
commit
15fe4ca188
16 changed files with 567 additions and 128 deletions
|
@ -26,7 +26,10 @@ Imports:
|
|||
REDCapCAST,
|
||||
purrr,
|
||||
broom,
|
||||
broom.helpers
|
||||
broom.helpers,
|
||||
cardx,
|
||||
parameters,
|
||||
DT
|
||||
Suggests:
|
||||
styler,
|
||||
devtools,
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
# Generated by roxygen2: do not edit by hand
|
||||
|
||||
S3method(regression_table,list)
|
||||
S3method(regression_table,webresearch_model)
|
||||
export(argsstring2list)
|
||||
export(baseline_table)
|
||||
export(default_format_arguments)
|
||||
|
@ -8,11 +10,12 @@ export(format_writer)
|
|||
export(getfun)
|
||||
export(index_embed)
|
||||
export(modify_qmd)
|
||||
export(panel_space)
|
||||
export(read_input)
|
||||
export(regression_model)
|
||||
export(regression_model_uv)
|
||||
export(regression_table)
|
||||
export(shiny_webResearch)
|
||||
export(specify_qmd_format)
|
||||
export(tbl_merge)
|
||||
export(write_quarto)
|
||||
importFrom(stats,as.formula)
|
||||
|
|
|
@ -118,7 +118,11 @@ dummy_Imports <- function() {
|
|||
MASS::as.fractions(),
|
||||
broom::augment(),
|
||||
broom.helpers::all_categorical(),
|
||||
here::here()
|
||||
here::here(),
|
||||
cardx::all_of(),
|
||||
parameters::ci(),
|
||||
DT::addRow(),
|
||||
bslib::accordion()
|
||||
)
|
||||
#https://github.com/hadley/r-pkgs/issues/828
|
||||
}
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
#' Print a flexible baseline characteristics table
|
||||
#' Create a regression model programatically
|
||||
#'
|
||||
#' @param data data set
|
||||
#' @param fun Name of function as character vector or function to use for model creation.
|
||||
|
@ -7,6 +7,7 @@
|
|||
#' @param auto.mode Make assumptions on function dependent on outcome data format. Overwrites other arguments.
|
||||
#' @param formula.str Formula as string. Passed through 'glue::glue'. If given, 'outcome.str' and 'vars' are ignored. Optional.
|
||||
#' @param args.list List of arguments passed to 'fun' with 'do.call'.
|
||||
#' @param ... ignored for now
|
||||
#'
|
||||
#' @importFrom stats as.formula
|
||||
#'
|
||||
|
@ -36,7 +37,8 @@ regression_model <- function(data,
|
|||
formula.str = NULL,
|
||||
args.list = NULL,
|
||||
fun = NULL,
|
||||
vars = NULL) {
|
||||
vars = NULL,
|
||||
...) {
|
||||
if (!is.null(formula.str)) {
|
||||
if (formula.str == "") {
|
||||
formula.str <- NULL
|
||||
|
@ -61,9 +63,18 @@ regression_model <- function(data,
|
|||
|
||||
# Formatting character variables as factor
|
||||
# Improvement should add a missing vector to format as NA
|
||||
data <- data |> dplyr::mutate(dplyr::across(dplyr::where(is.character), as.factor))
|
||||
data <- data |>
|
||||
purrr::map(\(.x){
|
||||
if (is.character(.x)) {
|
||||
suppressWarnings(REDCapCAST::as_factor(.x))
|
||||
} else {
|
||||
.x
|
||||
}
|
||||
}) |>
|
||||
dplyr::bind_cols()
|
||||
|
||||
if (is.null(fun)) auto.mode <- TRUE
|
||||
|
||||
# browser()
|
||||
if (auto.mode) {
|
||||
if (is.numeric(data[[outcome.str]])) {
|
||||
fun <- "stats::lm"
|
||||
|
@ -101,5 +112,93 @@ regression_model <- function(data,
|
|||
# Recreating the call
|
||||
# out$call <- match.call(definition=eval(parse(text=fun)), call(fun, data = 'data',formula = as.formula(formula.str),args.list))
|
||||
|
||||
class(out) <- c("webresearch_model", class(out))
|
||||
return(out)
|
||||
}
|
||||
|
||||
#' Create a regression model programatically
|
||||
#'
|
||||
#' @param data data set
|
||||
#' @param fun Name of function as character vector or function to use for model creation.
|
||||
#' @param vars character vector of variables to include
|
||||
#' @param outcome.str Name of outcome variable. Character vector.
|
||||
#' @param args.list List of arguments passed to 'fun' with 'do.call'.
|
||||
#' @param ... ignored for now
|
||||
#'
|
||||
#' @importFrom stats as.formula
|
||||
#'
|
||||
#' @return object of standard class for fun
|
||||
#' @export
|
||||
#'
|
||||
#' @examples
|
||||
#' \dontrun{
|
||||
#' gtsummary::trial |>
|
||||
#' regression_model_uv(outcome.str = "age")
|
||||
#' gtsummary::trial |>
|
||||
#' regression_model_uv(
|
||||
#' outcome.str = "age",
|
||||
#' fun = "stats::lm",
|
||||
#' args.list = NULL
|
||||
#' )
|
||||
#' gtsummary::trial |> regression_model_uv(
|
||||
#' outcome.str = "trt",
|
||||
#' fun = "stats::glm",
|
||||
#' args.list = list(family = stats::binomial(link = "logit"))
|
||||
#' )
|
||||
#' }
|
||||
regression_model_uv <- function(data,
|
||||
outcome.str,
|
||||
args.list = NULL,
|
||||
fun = NULL,
|
||||
vars = NULL,
|
||||
...) {
|
||||
if (!is.null(vars)) {
|
||||
data <- data |>
|
||||
dplyr::select(dplyr::all_of(
|
||||
unique(c(outcome.str, vars))
|
||||
))
|
||||
}
|
||||
|
||||
if (is.null(args.list)) {
|
||||
args.list <- list()
|
||||
}
|
||||
|
||||
if (is.null(fun)) {
|
||||
if (is.numeric(data[[outcome.str]])) {
|
||||
fun <- "stats::lm"
|
||||
} else if (is.factor(data[[outcome.str]])) {
|
||||
if (length(levels(data[[outcome.str]])) == 2) {
|
||||
fun <- "stats::glm"
|
||||
args.list <- list(family = stats::binomial(link = "logit"))
|
||||
} else if (length(levels(data[[outcome.str]])) > 2) {
|
||||
fun <- "MASS::polr"
|
||||
args.list <- list(
|
||||
Hess = TRUE,
|
||||
method = "logistic"
|
||||
)
|
||||
} else {
|
||||
stop("The provided output variable only has one level")
|
||||
}
|
||||
} else {
|
||||
stop("Output variable should be either numeric or factor for auto.mode")
|
||||
}
|
||||
}
|
||||
|
||||
assertthat::assert_that("character" %in% class(fun),
|
||||
msg = "Please provide the function as a character vector."
|
||||
)
|
||||
|
||||
out <- names(data)[!names(data) %in% outcome.str] |>
|
||||
purrr::map(\(.var){
|
||||
do.call(
|
||||
regression_model,
|
||||
c(
|
||||
list(data = data[match(c(outcome.str,.var),names(data))]),
|
||||
list(outcome.str=outcome.str),
|
||||
list(args.list=args.list)
|
||||
)
|
||||
)
|
||||
})
|
||||
|
||||
return(out)
|
||||
}
|
||||
|
|
|
@ -1,13 +1,16 @@
|
|||
#' Create table of regression model
|
||||
#'
|
||||
#' @param data regression model
|
||||
#' @param x regression model
|
||||
#' @param args.list list of arguments passed to 'fun'.
|
||||
#' @param fun function to use for table creation. Default is "gtsummary::tbl_regression".
|
||||
#' @param ... passed to methods
|
||||
#'
|
||||
#' @return object of standard class for fun
|
||||
#' @export
|
||||
#' @name regression_table
|
||||
#'
|
||||
#' @examples
|
||||
#' \dontrun{
|
||||
#' gtsummary::trial |>
|
||||
#' regression_model(
|
||||
#' outcome.str = "stage",
|
||||
|
@ -29,14 +32,82 @@
|
|||
#' args.list = list(family = binomial(link = "logit"))
|
||||
#' ) |>
|
||||
#' regression_table()
|
||||
regression_table <- function(data, args.list = NULL, fun = "gtsummary::tbl_regression") {
|
||||
|
||||
if (any(c(length(class(data))!=1, class(data)!="lm"))){
|
||||
if (!"exponentiate" %in% names(args.list)){
|
||||
args.list <- c(args.list,list(exponentiate=TRUE))
|
||||
}
|
||||
}
|
||||
|
||||
out <- do.call(getfun(fun), c(list(x = data), args.list))
|
||||
out |> gtsummary::add_glance_source_note()
|
||||
#' gtsummary::trial |>
|
||||
#' regression_model_uv(
|
||||
#' outcome.str = "trt",
|
||||
#' fun = "stats::glm",
|
||||
#' args.list = list(family = stats::binomial(link = "logit"))
|
||||
#' ) |>
|
||||
#' regression_table()
|
||||
#' gtsummary::trial |>
|
||||
#' regression_model_uv(
|
||||
#' outcome.str = "stage",
|
||||
#' args.list = list(family = stats::binomial(link = "logit"))
|
||||
#' ) |>
|
||||
#' regression_table()
|
||||
#'
|
||||
#' list(
|
||||
#' "Univariable" = regression_model_uv,
|
||||
#' "Multivariable" = regression_model
|
||||
#' ) |>
|
||||
#' lapply(\(.fun){
|
||||
#' do.call(
|
||||
#' .fun,
|
||||
#' c(
|
||||
#' list(data = gtsummary::trial),
|
||||
#' list(outcome.str = "stage")
|
||||
#' )
|
||||
#' )
|
||||
#' }) |>
|
||||
#' purrr::map(regression_table) |>
|
||||
#' tbl_merge()
|
||||
#' }
|
||||
regression_table <- function(x, ...) {
|
||||
UseMethod("regression_table")
|
||||
}
|
||||
|
||||
#' @rdname regression_table
|
||||
#' @export
|
||||
regression_table.list <- function(x, ...) {
|
||||
x |>
|
||||
purrr::map(\(.m){
|
||||
regression_table(x = .m, ...) |>
|
||||
gtsummary::add_n()
|
||||
}) |>
|
||||
gtsummary::tbl_stack()
|
||||
}
|
||||
|
||||
#' @rdname regression_table
|
||||
#' @export
|
||||
regression_table.webresearch_model <- function(x, ..., args.list = NULL, fun = "gtsummary::tbl_regression") {
|
||||
# Stripping custom class
|
||||
class(x) <- class(x)[class(x) != "webresearch_model"]
|
||||
|
||||
if (any(c(length(class(x)) != 1, class(x) != "lm"))) {
|
||||
if (!"exponentiate" %in% names(args.list)) {
|
||||
args.list <- c(args.list, list(exponentiate = TRUE))
|
||||
}
|
||||
}
|
||||
|
||||
out <- do.call(getfun(fun), c(list(x = x), args.list))
|
||||
out |>
|
||||
gtsummary::add_glance_source_note() # |>
|
||||
# gtsummary::bold_p()
|
||||
}
|
||||
|
||||
|
||||
#' A substitue to gtsummary::tbl_merge, that will use list names for the tab
|
||||
#' spanner names.
|
||||
#'
|
||||
#' @param data gtsummary list object
|
||||
#'
|
||||
#' @return gt summary list object
|
||||
#' @export
|
||||
#'
|
||||
tbl_merge <- function(data) {
|
||||
if (is.null(names(data))) {
|
||||
data |> gtsummary::tbl_merge()
|
||||
} else {
|
||||
data |> gtsummary::tbl_merge(tab_spanner = names(data))
|
||||
}
|
||||
}
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
shiny_webResearch <- function(data = NULL, ...) {
|
||||
appDir <- system.file("apps", "data_analysis", package = "webResearch")
|
||||
if (appDir == "") {
|
||||
stop("Could not find example directory. Try re-installing `webResearch`.", call. = FALSE)
|
||||
stop("Could not find the app directory. Try re-installing `webResearch`.", call. = FALSE)
|
||||
}
|
||||
|
||||
G <- .GlobalEnv
|
||||
|
@ -22,13 +22,3 @@ shiny_webResearch <- function(data = NULL, ...) {
|
|||
a <- shiny::runApp(appDir = appDir, ...)
|
||||
return(invisible(a))
|
||||
}
|
||||
|
||||
|
||||
#' Wrapping nav_spacer to avoid errors on dependencies when packaging
|
||||
#'
|
||||
#' @return bslib object
|
||||
#' @export
|
||||
#'
|
||||
panel_space <- function() {
|
||||
bslib::nav_spacer()
|
||||
}
|
|
@ -5,6 +5,6 @@ account: agdamsbo
|
|||
server: shinyapps.io
|
||||
hostUrl: https://api.shinyapps.io/v1
|
||||
appId: 13276335
|
||||
bundleId: 9425248
|
||||
bundleId: 9426438
|
||||
url: https://agdamsbo.shinyapps.io/webResearch/
|
||||
version: 1
|
||||
|
|
|
@ -53,7 +53,7 @@ server <- function(input, output, session) {
|
|||
# or all rows if selected, will be shown.
|
||||
if (v$input) {
|
||||
out <- webResearch_data
|
||||
} else if (v$test=="test") {
|
||||
} else if (v$test == "test") {
|
||||
out <- gtsummary::trial
|
||||
} else {
|
||||
shiny::req(input$file)
|
||||
|
@ -61,6 +61,15 @@ server <- function(input, output, session) {
|
|||
}
|
||||
|
||||
v$ds <- "present"
|
||||
if (input$factorize == "yes") {
|
||||
out <- out |>
|
||||
(\(.x){
|
||||
suppressWarnings(
|
||||
REDCapCAST::numchar2fct(.x)
|
||||
)
|
||||
})()
|
||||
|
||||
}
|
||||
return(out)
|
||||
})
|
||||
|
||||
|
@ -69,7 +78,7 @@ server <- function(input, output, session) {
|
|||
inputId = "include_vars",
|
||||
selected = NULL,
|
||||
label = "Covariables to include",
|
||||
choices = colnames(ds())[-match(input$outcome_var, colnames(ds()))],
|
||||
choices = colnames(ds()),
|
||||
multiple = TRUE
|
||||
)
|
||||
})
|
||||
|
@ -89,7 +98,7 @@ server <- function(input, output, session) {
|
|||
inputId = "strat_var",
|
||||
selected = "none",
|
||||
label = "Select variable to stratify baseline",
|
||||
choices = c("none" ,colnames(ds())),
|
||||
choices = c("none", colnames(ds()[base_vars()])),
|
||||
multiple = FALSE
|
||||
)
|
||||
})
|
||||
|
@ -99,21 +108,39 @@ server <- function(input, output, session) {
|
|||
inputId = "factor_vars",
|
||||
selected = colnames(ds())[sapply(ds(), is.factor)],
|
||||
label = "Covariables to format as categorical",
|
||||
choices = colnames(ds())[sapply(ds(), is.character)],
|
||||
choices = colnames(ds()),
|
||||
multiple = TRUE
|
||||
)
|
||||
})
|
||||
|
||||
output$data.input <- shiny::renderTable({
|
||||
utils::head(ds(),20)
|
||||
base_vars <- shiny::reactive({
|
||||
if (is.null(input$include_vars)) {
|
||||
out <- colnames(ds())
|
||||
} else {
|
||||
out <- unique(c(input$include_vars, input$outcome_var))
|
||||
}
|
||||
return(out)
|
||||
})
|
||||
|
||||
output$data.classes <- shiny::renderTable({
|
||||
shiny::req(input$file)
|
||||
data.frame(matrix(sapply(ds(),\(.x){class(.x)[1]}),nrow=1)) |>
|
||||
stats::setNames(names(ds()))
|
||||
# output$data.input <- shiny::renderTable({
|
||||
# utils::head(ds(), 20)
|
||||
# })
|
||||
|
||||
output$data.input <- DT::renderDT({
|
||||
ds()[base_vars()]
|
||||
})
|
||||
|
||||
output$data.classes <- gt::render_gt({
|
||||
shiny::req(input$file)
|
||||
data.frame(matrix(sapply(ds(), \(.x){
|
||||
class(.x)[1]
|
||||
}), nrow = 1)) |>
|
||||
stats::setNames(names(ds())) |>
|
||||
gt::gt()
|
||||
})
|
||||
|
||||
|
||||
|
||||
shiny::observeEvent(
|
||||
{
|
||||
input$load
|
||||
|
@ -127,28 +154,45 @@ server <- function(input, output, session) {
|
|||
|
||||
data <- data |> factorize(vars = input$factor_vars)
|
||||
|
||||
if (is.factor(data[[input$strat_var]])) {
|
||||
by.var <- input$strat_var
|
||||
} else {
|
||||
# if (is.factor(data[[input$strat_var]])) {
|
||||
# by.var <- input$strat_var
|
||||
# } else {
|
||||
# by.var <- NULL
|
||||
# }
|
||||
|
||||
if (input$strat_var == "none") {
|
||||
by.var <- NULL
|
||||
}
|
||||
|
||||
if (is.null(input$include_vars)) {
|
||||
base_vars <- colnames(data)
|
||||
} else {
|
||||
base_vars <- c(input$include_vars, input$outcome_var)
|
||||
by.var <- input$strat_var
|
||||
}
|
||||
|
||||
data <- dplyr::select(data, dplyr::all_of(base_vars))
|
||||
data <- data[base_vars()]
|
||||
|
||||
model <- data |>
|
||||
regression_model(
|
||||
outcome.str = input$outcome_var,
|
||||
auto.mode = input$regression_auto == 1,
|
||||
formula.str = input$regression_formula,
|
||||
fun = input$regression_fun,
|
||||
args.list = eval(parse(text = paste0("list(", input$regression_args, ")")))
|
||||
# model <- data |>
|
||||
# regression_model(
|
||||
# outcome.str = input$outcome_var,
|
||||
# auto.mode = input$regression_auto == 1,
|
||||
# formula.str = input$regression_formula,
|
||||
# fun = input$regression_fun,
|
||||
# args.list = eval(parse(text = paste0("list(", input$regression_args, ")")))
|
||||
# )
|
||||
|
||||
models <- list(
|
||||
"Univariable" = regression_model_uv,
|
||||
"Multivariable" = regression_model
|
||||
) |>
|
||||
lapply(\(.fun){
|
||||
do.call(
|
||||
.fun,
|
||||
c(
|
||||
list(data = data),
|
||||
list(outcome.str = input$outcome_var),
|
||||
list(formula.str = input$regression_formula),
|
||||
list(fun = input$regression_fun),
|
||||
list(args.list = eval(parse(text = paste0("list(", input$regression_args, ")"))))
|
||||
)
|
||||
)
|
||||
})
|
||||
|
||||
|
||||
v$list <- list(
|
||||
|
@ -161,14 +205,24 @@ server <- function(input, output, session) {
|
|||
)
|
||||
) |>
|
||||
(\(.x){
|
||||
if (!is.null(by.var)){
|
||||
if (!is.null(by.var)) {
|
||||
.x |> gtsummary::add_overall()
|
||||
} else {
|
||||
.x
|
||||
}
|
||||
})() |>
|
||||
(\(.x){
|
||||
if (input$add_p == "yes") {
|
||||
.x |>
|
||||
gtsummary::add_p() |>
|
||||
gtsummary::bold_p()
|
||||
} else {
|
||||
.x
|
||||
}
|
||||
})(),
|
||||
table2 = model |>
|
||||
regression_table()
|
||||
table2 = models |>
|
||||
purrr::map(regression_table) |>
|
||||
tbl_merge()
|
||||
)
|
||||
|
||||
output$table1 <- gt::render_gt(
|
||||
|
@ -180,7 +234,6 @@ server <- function(input, output, session) {
|
|||
v$list$table2 |>
|
||||
gtsummary::as_gt()
|
||||
)
|
||||
|
||||
}
|
||||
)
|
||||
|
||||
|
@ -229,5 +282,4 @@ server <- function(input, output, session) {
|
|||
print(paste(.x, "deleted"))
|
||||
})
|
||||
})
|
||||
|
||||
}
|
||||
|
|
|
@ -1,39 +1,16 @@
|
|||
library(shiny)
|
||||
library(bslib)
|
||||
requireNamespace("gt")
|
||||
# require(ggplot2)
|
||||
# source("https://raw.githubusercontent.com/agdamsbo/cognitive.index.lookup/main/R/index_from_raw.R")
|
||||
# source("https://raw.githubusercontent.com/agdamsbo/cognitive.index.lookup/main/R/plot_index.R")
|
||||
# source(here::here("R/index_from_raw.R"))
|
||||
# source(here::here("R/plot_index.R"))
|
||||
|
||||
# ui <- fluidPage(
|
||||
|
||||
cards <- list(
|
||||
bslib::card(
|
||||
max_height = "200px",
|
||||
full_screen = TRUE,
|
||||
bslib::card_header("Data overview"),
|
||||
shiny::uiOutput("data.input")
|
||||
),
|
||||
bslib::card(
|
||||
# max_height = "200px",
|
||||
full_screen = TRUE,
|
||||
bslib::card_header("Baseline characteristics"),
|
||||
gt::gt_output(outputId = "table1")
|
||||
),
|
||||
bslib::card(
|
||||
full_screen = TRUE,
|
||||
bslib::card_header("Multivariable regression table"),
|
||||
gt::gt_output(outputId = "table2")
|
||||
)
|
||||
)
|
||||
|
||||
panels <- list(
|
||||
bslib::nav_panel(
|
||||
title = "Data overview",
|
||||
shiny::uiOutput("data.classes"),
|
||||
shiny::uiOutput("data.input")
|
||||
# shiny::uiOutput("data.classes"),
|
||||
# shiny::uiOutput("data.input"),
|
||||
shiny::p("Classes of uploaded data"),
|
||||
gt::gt_output("data.classes"),
|
||||
shiny::p("Subset data"),
|
||||
DT::DTOutput("data.input")
|
||||
),
|
||||
bslib::nav_panel(
|
||||
title = "Baseline characteristics",
|
||||
|
@ -47,25 +24,15 @@ panels <- list(
|
|||
|
||||
|
||||
ui <- bslib::page(
|
||||
theme = bslib::bs_theme(bootswatch = "minty",
|
||||
theme = bslib::bs_theme(
|
||||
bootswatch = "minty",
|
||||
base_font = font_google("Inter"),
|
||||
code_font = font_google("JetBrains Mono")
|
||||
),
|
||||
# theme = bslib::bs_theme(
|
||||
# bg = "#101010",
|
||||
# fg = "#FFF",
|
||||
# primary = "#E69F00",
|
||||
# secondary = "#0072B2",
|
||||
# success = "#009E73",
|
||||
# base_font = font_google("Inter"),
|
||||
# code_font = font_google("JetBrains Mono")
|
||||
# ),
|
||||
title = "webResearcher for easy data analysis",
|
||||
bslib::page_navbar(
|
||||
title = "webResearcher",
|
||||
header = h6("Welcome to the webResearcher tool. This is an early alpha version to act as a proof-of-concept and in no way intended for wider public use."),
|
||||
|
||||
# sidebarPanel(
|
||||
sidebar = bslib::sidebar(
|
||||
width = 300,
|
||||
open = "open",
|
||||
|
@ -98,6 +65,16 @@ ui <- bslib::page(
|
|||
shiny::conditionalPanel(
|
||||
condition = "output.uploaded=='yes'",
|
||||
shiny::h4("Parameter specifications"),
|
||||
shiny::radioButtons(
|
||||
inputId = "factorize",
|
||||
label = "Factorize variables with few levels?",
|
||||
selected = "yes",
|
||||
inline = TRUE,
|
||||
choices = list(
|
||||
"Yes" = "yes",
|
||||
"No" = "no"
|
||||
)
|
||||
),
|
||||
shiny::radioButtons(
|
||||
inputId = "regression_auto",
|
||||
label = "Automatically choose function",
|
||||
|
@ -126,9 +103,23 @@ ui <- bslib::page(
|
|||
value = ""
|
||||
)
|
||||
),
|
||||
shiny::helpText(em("Please specify relevant columns from your data, and press 'Load data'")),
|
||||
shiny::helpText(em("Please specify relevant settings for your data, and press 'Analyse'")),
|
||||
shiny::uiOutput("outcome_var"),
|
||||
shiny::uiOutput("strat_var"),
|
||||
shiny::conditionalPanel(
|
||||
condition = "input.strat_var!='none'",
|
||||
shiny::radioButtons(
|
||||
inputId = "add_p",
|
||||
label = "Compare strata?",
|
||||
selected = "no",
|
||||
inline = TRUE,
|
||||
choices = list(
|
||||
"No" = "no",
|
||||
"Yes" = "yes"
|
||||
)
|
||||
),
|
||||
shiny::helpText("Option to perform statistical comparisons between strata in baseline table.")
|
||||
),
|
||||
shiny::radioButtons(
|
||||
inputId = "all",
|
||||
label = "Specify covariables",
|
||||
|
@ -149,15 +140,27 @@ ui <- bslib::page(
|
|||
selected = "no",
|
||||
inline = TRUE,
|
||||
choices = list(
|
||||
"No" = "no",
|
||||
"Yes" = "yes"
|
||||
"Yes" = "yes",
|
||||
"No" = "no"
|
||||
)
|
||||
),
|
||||
shiny::conditionalPanel(
|
||||
condition = "input.specify_factors=='yes'",
|
||||
shiny::uiOutput("factor_vars")
|
||||
),
|
||||
shiny::actionButton("load", "Analyse", class = "btn-primary"),
|
||||
bslib::input_task_button(
|
||||
id = "load",
|
||||
label = "Analyse",
|
||||
icon = shiny::icon("pencil", lib = "glyphicon"),
|
||||
label_busy = "Working...",
|
||||
icon_busy = fontawesome::fa_i("arrows-rotate",
|
||||
class = "fa-spin",
|
||||
"aria-hidden" = "true"),
|
||||
type = "primary",
|
||||
auto_reset = TRUE
|
||||
),
|
||||
shiny::helpText("If you change the parameters, press 'Analyse' again to update the tables"),
|
||||
# shiny::actionButton("load", "Analyse", class = "btn-primary"),
|
||||
#
|
||||
# # Horizontal line ----
|
||||
tags$hr(),
|
||||
|
|
|
@ -1,14 +0,0 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/app.R
|
||||
\name{panel_space}
|
||||
\alias{panel_space}
|
||||
\title{Wrapping nav_spacer to avoid errors on dependencies when packaging}
|
||||
\usage{
|
||||
panel_space()
|
||||
}
|
||||
\value{
|
||||
bslib object
|
||||
}
|
||||
\description{
|
||||
Wrapping nav_spacer to avoid errors on dependencies when packaging
|
||||
}
|
|
@ -2,7 +2,7 @@
|
|||
% Please edit documentation in R/regression_model.R
|
||||
\name{regression_model}
|
||||
\alias{regression_model}
|
||||
\title{Print a flexible baseline characteristics table}
|
||||
\title{Create a regression model programatically}
|
||||
\usage{
|
||||
regression_model(
|
||||
data,
|
||||
|
@ -11,7 +11,8 @@ regression_model(
|
|||
formula.str = NULL,
|
||||
args.list = NULL,
|
||||
fun = NULL,
|
||||
vars = NULL
|
||||
vars = NULL,
|
||||
...
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
|
@ -28,12 +29,14 @@ regression_model(
|
|||
\item{fun}{Name of function as character vector or function to use for model creation.}
|
||||
|
||||
\item{vars}{character vector of variables to include}
|
||||
|
||||
\item{...}{ignored for now}
|
||||
}
|
||||
\value{
|
||||
object of standard class for fun
|
||||
}
|
||||
\description{
|
||||
Print a flexible baseline characteristics table
|
||||
Create a regression model programatically
|
||||
}
|
||||
\examples{
|
||||
gtsummary::trial |>
|
||||
|
|
51
man/regression_model_uv.Rd
Normal file
51
man/regression_model_uv.Rd
Normal file
|
@ -0,0 +1,51 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/regression_model.R
|
||||
\name{regression_model_uv}
|
||||
\alias{regression_model_uv}
|
||||
\title{Create a regression model programatically}
|
||||
\usage{
|
||||
regression_model_uv(
|
||||
data,
|
||||
outcome.str,
|
||||
args.list = NULL,
|
||||
fun = NULL,
|
||||
vars = NULL,
|
||||
...
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{data set}
|
||||
|
||||
\item{outcome.str}{Name of outcome variable. Character vector.}
|
||||
|
||||
\item{args.list}{List of arguments passed to 'fun' with 'do.call'.}
|
||||
|
||||
\item{fun}{Name of function as character vector or function to use for model creation.}
|
||||
|
||||
\item{vars}{character vector of variables to include}
|
||||
|
||||
\item{...}{ignored for now}
|
||||
}
|
||||
\value{
|
||||
object of standard class for fun
|
||||
}
|
||||
\description{
|
||||
Create a regression model programatically
|
||||
}
|
||||
\examples{
|
||||
\dontrun{
|
||||
gtsummary::trial |>
|
||||
regression_model_uv(outcome.str = "age")
|
||||
gtsummary::trial |>
|
||||
regression_model_uv(
|
||||
outcome.str = "age",
|
||||
fun = "stats::lm",
|
||||
args.list = NULL
|
||||
)
|
||||
gtsummary::trial |> regression_model_uv(
|
||||
outcome.str = "trt",
|
||||
fun = "stats::glm",
|
||||
args.list = list(family = stats::binomial(link = "logit"))
|
||||
)
|
||||
}
|
||||
}
|
|
@ -2,12 +2,20 @@
|
|||
% Please edit documentation in R/regression_table.R
|
||||
\name{regression_table}
|
||||
\alias{regression_table}
|
||||
\alias{regression_table.list}
|
||||
\alias{regression_table.webresearch_model}
|
||||
\title{Create table of regression model}
|
||||
\usage{
|
||||
regression_table(data, args.list = NULL, fun = "gtsummary::tbl_regression")
|
||||
regression_table(x, ...)
|
||||
|
||||
\method{regression_table}{list}(x, ...)
|
||||
|
||||
\method{regression_table}{webresearch_model}(x, ..., args.list = NULL, fun = "gtsummary::tbl_regression")
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{regression model}
|
||||
\item{x}{regression model}
|
||||
|
||||
\item{...}{passed to methods}
|
||||
|
||||
\item{args.list}{list of arguments passed to 'fun'.}
|
||||
|
||||
|
@ -20,6 +28,7 @@ object of standard class for fun
|
|||
Create table of regression model
|
||||
}
|
||||
\examples{
|
||||
\dontrun{
|
||||
gtsummary::trial |>
|
||||
regression_model(
|
||||
outcome.str = "stage",
|
||||
|
@ -41,4 +50,34 @@ gtsummary::trial |>
|
|||
args.list = list(family = binomial(link = "logit"))
|
||||
) |>
|
||||
regression_table()
|
||||
gtsummary::trial |>
|
||||
regression_model_uv(
|
||||
outcome.str = "trt",
|
||||
fun = "stats::glm",
|
||||
args.list = list(family = stats::binomial(link = "logit"))
|
||||
) |>
|
||||
regression_table()
|
||||
gtsummary::trial |>
|
||||
regression_model_uv(
|
||||
outcome.str = "stage",
|
||||
args.list = list(family = stats::binomial(link = "logit"))
|
||||
) |>
|
||||
regression_table()
|
||||
|
||||
list(
|
||||
"Univariable" = regression_model_uv,
|
||||
"Multivariable" = regression_model
|
||||
) |>
|
||||
lapply(\(.fun){
|
||||
do.call(
|
||||
.fun,
|
||||
c(
|
||||
list(data = gtsummary::trial),
|
||||
list(outcome.str = "stage")
|
||||
)
|
||||
)
|
||||
}) |>
|
||||
purrr::map(regression_table) |>
|
||||
tbl_merge()
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/app.R
|
||||
% Please edit documentation in R/shiny_webResearch.R
|
||||
\name{shiny_webResearch}
|
||||
\alias{shiny_webResearch}
|
||||
\title{Test version of the shiny_cast function to launch the app with a data set in
|
||||
|
|
19
man/tbl_merge.Rd
Normal file
19
man/tbl_merge.Rd
Normal file
|
@ -0,0 +1,19 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/regression_table.R
|
||||
\name{tbl_merge}
|
||||
\alias{tbl_merge}
|
||||
\title{A substitue to gtsummary::tbl_merge, that will use list names for the tab
|
||||
spanner names.}
|
||||
\usage{
|
||||
tbl_merge(data)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{gtsummary list object}
|
||||
}
|
||||
\value{
|
||||
gt summary list object
|
||||
}
|
||||
\description{
|
||||
A substitue to gtsummary::tbl_merge, that will use list names for the tab
|
||||
spanner names.
|
||||
}
|
116
renv.lock
116
renv.lock
|
@ -9,6 +9,23 @@
|
|||
]
|
||||
},
|
||||
"Packages": {
|
||||
"DT": {
|
||||
"Package": "DT",
|
||||
"Version": "0.33",
|
||||
"Source": "Repository",
|
||||
"Repository": "CRAN",
|
||||
"Requirements": [
|
||||
"crosstalk",
|
||||
"htmltools",
|
||||
"htmlwidgets",
|
||||
"httpuv",
|
||||
"jquerylib",
|
||||
"jsonlite",
|
||||
"magrittr",
|
||||
"promises"
|
||||
],
|
||||
"Hash": "64ff3427f559ce3f2597a4fe13255cb6"
|
||||
},
|
||||
"MASS": {
|
||||
"Package": "MASS",
|
||||
"Version": "7.3-61",
|
||||
|
@ -169,6 +186,22 @@
|
|||
],
|
||||
"Hash": "543776ae6848fde2f48ff3816d0628bc"
|
||||
},
|
||||
"bayestestR": {
|
||||
"Package": "bayestestR",
|
||||
"Version": "0.15.0",
|
||||
"Source": "Repository",
|
||||
"Repository": "CRAN",
|
||||
"Requirements": [
|
||||
"R",
|
||||
"datawizard",
|
||||
"graphics",
|
||||
"insight",
|
||||
"methods",
|
||||
"stats",
|
||||
"utils"
|
||||
],
|
||||
"Hash": "d7c05ccb9d60d87dbbe8b4042c385f01"
|
||||
},
|
||||
"bigD": {
|
||||
"Package": "bigD",
|
||||
"Version": "0.3.0",
|
||||
|
@ -301,6 +334,23 @@
|
|||
],
|
||||
"Hash": "2147e8448f4eb87197520fc1710855c7"
|
||||
},
|
||||
"cardx": {
|
||||
"Package": "cardx",
|
||||
"Version": "0.2.1",
|
||||
"Source": "Repository",
|
||||
"Repository": "CRAN",
|
||||
"Requirements": [
|
||||
"R",
|
||||
"cards",
|
||||
"cli",
|
||||
"dplyr",
|
||||
"glue",
|
||||
"lifecycle",
|
||||
"rlang",
|
||||
"tidyr"
|
||||
],
|
||||
"Hash": "e5458dd65b0602136b16aed802d3bd50"
|
||||
},
|
||||
"cellranger": {
|
||||
"Package": "cellranger",
|
||||
"Version": "1.1.0",
|
||||
|
@ -389,6 +439,19 @@
|
|||
],
|
||||
"Hash": "859d96e65ef198fd43e82b9628d593ef"
|
||||
},
|
||||
"crosstalk": {
|
||||
"Package": "crosstalk",
|
||||
"Version": "1.2.1",
|
||||
"Source": "Repository",
|
||||
"Repository": "CRAN",
|
||||
"Requirements": [
|
||||
"R6",
|
||||
"htmltools",
|
||||
"jsonlite",
|
||||
"lazyeval"
|
||||
],
|
||||
"Hash": "ab12c7b080a57475248a30f4db6298c0"
|
||||
},
|
||||
"curl": {
|
||||
"Package": "curl",
|
||||
"Version": "6.0.1",
|
||||
|
@ -399,6 +462,19 @@
|
|||
],
|
||||
"Hash": "e8ba62486230951fcd2b881c5be23f96"
|
||||
},
|
||||
"datawizard": {
|
||||
"Package": "datawizard",
|
||||
"Version": "0.13.0",
|
||||
"Source": "Repository",
|
||||
"Repository": "CRAN",
|
||||
"Requirements": [
|
||||
"R",
|
||||
"insight",
|
||||
"stats",
|
||||
"utils"
|
||||
],
|
||||
"Hash": "303aeace6f3554ce2d62e5d1df6fcd6e"
|
||||
},
|
||||
"digest": {
|
||||
"Package": "digest",
|
||||
"Version": "0.6.37",
|
||||
|
@ -706,6 +782,19 @@
|
|||
],
|
||||
"Hash": "ac107251d9d9fd72f0ca8049988f1d7f"
|
||||
},
|
||||
"insight": {
|
||||
"Package": "insight",
|
||||
"Version": "1.0.0",
|
||||
"Source": "Repository",
|
||||
"Repository": "CRAN",
|
||||
"Requirements": [
|
||||
"R",
|
||||
"methods",
|
||||
"stats",
|
||||
"utils"
|
||||
],
|
||||
"Hash": "bee0c3abb5eea6c4170ea2a7c334893f"
|
||||
},
|
||||
"jquerylib": {
|
||||
"Package": "jquerylib",
|
||||
"Version": "0.1.4",
|
||||
|
@ -812,6 +901,16 @@
|
|||
],
|
||||
"Hash": "a3e051d405326b8b0012377434c62b37"
|
||||
},
|
||||
"lazyeval": {
|
||||
"Package": "lazyeval",
|
||||
"Version": "0.2.2",
|
||||
"Source": "Repository",
|
||||
"Repository": "CRAN",
|
||||
"Requirements": [
|
||||
"R"
|
||||
],
|
||||
"Hash": "d908914ae53b04d4c0c0fd72ecc35370"
|
||||
},
|
||||
"lifecycle": {
|
||||
"Package": "lifecycle",
|
||||
"Version": "1.0.4",
|
||||
|
@ -931,6 +1030,23 @@
|
|||
],
|
||||
"Hash": "55ddd2d4a1959535f18393478b0c14a6"
|
||||
},
|
||||
"parameters": {
|
||||
"Package": "parameters",
|
||||
"Version": "0.23.0",
|
||||
"Source": "Repository",
|
||||
"Repository": "CRAN",
|
||||
"Requirements": [
|
||||
"R",
|
||||
"bayestestR",
|
||||
"datawizard",
|
||||
"graphics",
|
||||
"insight",
|
||||
"methods",
|
||||
"stats",
|
||||
"utils"
|
||||
],
|
||||
"Hash": "518970426f8042a2b27c3415da881674"
|
||||
},
|
||||
"pillar": {
|
||||
"Package": "pillar",
|
||||
"Version": "1.9.0",
|
||||
|
|
Loading…
Add table
Reference in a new issue