The easiest way to get started is to launch [the onlie version of the app (click this link)](https://app.freesearchr.org/). Please be aware not to upload sensitive data in this version as data security can not be guaranteed in this online environment. The app can easily be run from *R* on your own computer by running the code below ([read more on running locally here](https://agdamsbo.github.io/FreesearchR/#run-locally-on-your-own-machine)):
Once in the app, get started by loading your data. You have three options available for importing data: file upload, REDCap server export and local or sample data.
After choosing a data source nad importing data, you can preview the basic data structure and missing observations, set a threshold to filter data by completeness and further manually specify variables to include for analyses.
Several data file formats are supported for easy import (csv, txt, xls(x), ods, rds, dta). If importing workbooks (xls(x) or ods), you are prompted to specify sheet(s) to import. If choosing multiple sheets, these are automatically merged by common variable(s), so please make sure that key/ID variables are correctly named identically.
Export data directly from a REDCap server. You need to first generate an API-token ([see these instruction](https://confluence.research.cchmc.org/pages/viewpage.action?pageId=50987698)) in REDCap. Make sure you have the necessary rights to do so.
Please don't store the API-key on your device unless encrypted or in a keyring, as this may compromise data safety. Log in to your REDCap server and retrieve the token when needed.
The module will validate the information and you can click "Connect".
This will unfold options to preview your data dictionary (the main database metadata), choose fields/variables to download as well as filtering options.
When opening the online hosted app, you can load some sample data to try out the app. When running the app locally from *R* on your own computer, you will find all data frames loaded in your environment here. This extends the possible uses of this app to allow for quick and easy data insights and code generation.
This is the panel to prepare data for evaluation and analyses and get a good overview of your data, check data is classed and formatted correctly, perform simple modifications and filter data.
Re-class, rename, and relabel variables. Subset data, create new variables and reorder factor levels. Also, compare the modified dataset to the original and restore the original data.
This section is only intended for very simple explorative analyses and as a proof-of-concept for now. If you are doing complex regression analyses you should probably just write the code yourself.
This will generate a combined table with both univariate regression model results for each included variable and a multivariate model with all variables included for explorative analyses.