FreesearchR/inst/apps/data_analysis_modules/server.R

353 lines
8.9 KiB
R
Raw Normal View History

# project.aid::merge_scripts(list.files("R/",full.names = TRUE),dest = here::here("app/functions.R"))
# source(here::here("app/functions.R"))
# source("https://raw.githubusercontent.com/agdamsbo/webResearch/refs/heads/main/app/functions.R")
library(readr)
library(MASS)
library(stats)
library(gtsummary)
library(gt)
library(openxlsx2)
library(haven)
library(readODS)
library(shiny)
library(bslib)
library(assertthat)
library(dplyr)
library(quarto)
library(here)
library(broom)
library(broom.helpers)
library(REDCapCAST)
library(easystats)
library(patchwork)
library(DHARMa)
# if (!requireNamespace("webResearch")) {
# devtools::install_github("agdamsbo/webResearch", quiet = TRUE, upgrade = "never")
# }
# library(webResearch)
if (file.exists(here::here("functions.R"))) {
source(here::here("functions.R"))
}
server <- function(input, output, session) {
## Listing files in www in session start to keep when ending and removing
## everything else.
files.to.keep <- list.files("www/")
v <- shiny::reactiveValues(
list = NULL,
ds = NULL,
input = exists("webResearch_data"),
local_temp = NULL,
quarto = NULL,
test = "no"
)
data_file <- datamods::import_file_server(
id = "file_import",
show_data_in = "popup",
trigger_return = "button",
return_class = "data.frame",
read_fns = list(
ods = function(file) {
readODS::read_ods(path = file)
},
dta = function(file) {
haven::read_dta(file = file)
}
)
)
data_redcap <- m_redcap_readServer(
id = "redcap_import",
output.format = "list"
)
output$redcap_prev <- DT::renderDT(
{
DT::datatable(head(purrr::pluck(data_redcap(), 1)(), 5),
caption = "First 5 observations"
)
},
server = TRUE
)
ds <- shiny::reactive({
# input$file1 will be NULL initially. After the user selects
# and uploads a file, head of that data file by default,
# or all rows if selected, will be shown.
if (v$input) {
out <- webResearch_data
} else if (input$source == "file") {
out <- data_file$data() |>
REDCapCAST::numchar2fct()
} else if (input$source == "redcap") {
out <- purrr::pluck(data_redcap(), 1)() |>
REDCapCAST::parse_data() |>
REDCapCAST::as_factor() |>
REDCapCAST::numchar2fct()
}
v$ds <- "loaded"
# browser()
# if (input$factorize == "yes") {
# out <- out |>
# REDCapCAST::numchar2fct()
# }
out
})
output$include_vars <- shiny::renderUI({
selectizeInput(
inputId = "include_vars",
selected = NULL,
label = "Covariables to include",
choices = colnames(ds()),
multiple = TRUE
)
})
output$outcome_var <- shiny::renderUI({
selectInput(
inputId = "outcome_var",
selected = NULL,
label = "Select outcome variable",
choices = colnames(ds()),
multiple = FALSE
)
})
output$strat_var <- shiny::renderUI({
selectInput(
inputId = "strat_var",
selected = "none",
label = "Select variable to stratify baseline",
choices = c("none", colnames(ds()[base_vars()])),
multiple = FALSE
)
})
output$factor_vars <- shiny::renderUI({
selectizeInput(
inputId = "factor_vars",
selected = colnames(ds())[sapply(ds(), is.factor)],
label = "Covariables to format as categorical",
choices = colnames(ds()),
multiple = TRUE
)
})
base_vars <- shiny::reactive({
if (is.null(input$include_vars)) {
out <- colnames(ds())
} else {
out <- unique(c(input$include_vars, input$outcome_var))
}
return(out)
})
## Have a look at column filters at some point
## There should be a way to use the filtering the filter data for further analyses
## Disabled for now, as the JS is apparently not isolated
output$data_table <-
DT::renderDT(
{
DT::datatable(ds()[base_vars()])
},
server = FALSE
)
output$data.classes <- gt::render_gt({
shiny::req(input$file)
data.frame(matrix(sapply(ds(), \(.x){
class(.x)[1]
}), nrow = 1)) |>
stats::setNames(names(ds())) |>
gt::gt()
})
shiny::observeEvent(input$act_start, {
bslib::nav_select(id = "main_panel", selected = "Data analysis")
})
shiny::observeEvent(
{
input$load
},
{
shiny::req(input$outcome_var)
# Assumes all character variables can be formatted as factors
data <- ds() |>
dplyr::mutate(dplyr::across(dplyr::where(is.character), as.factor))
data <- data |> factorize(vars = input$factor_vars)
# if (is.factor(data[[input$strat_var]])) {
# by.var <- input$strat_var
# } else {
# by.var <- NULL
# }
if (input$strat_var == "none") {
by.var <- NULL
} else {
by.var <- input$strat_var
}
data <- data[base_vars()]
# model <- data |>
# regression_model(
# outcome.str = input$outcome_var,
# auto.mode = input$regression_auto == 1,
# formula.str = input$regression_formula,
# fun = input$regression_fun,
# args.list = eval(parse(text = paste0("list(", input$regression_args, ")")))
# )
models <- list(
"Univariable" = regression_model_uv,
"Multivariable" = regression_model
) |>
lapply(\(.fun){
do.call(
.fun,
c(
list(data = data),
list(outcome.str = input$outcome_var),
list(formula.str = input$regression_formula),
list(fun = input$regression_fun),
list(args.list = eval(parse(text = paste0("list(", input$regression_args, ")"))))
)
)
})
# browser()
# check <- performance::check_model(purrr::pluck(models,"Multivariable") |>
# (\(x){
# class(x) <- class(x)[class(x) != "webresearch_model"]
# return(x)
# })())
check <- purrr::pluck(models, "Multivariable") |>
performance::check_model()
v$list <- list(
data = data,
check = check,
table1 = data |>
baseline_table(
fun.args =
list(
by = by.var
)
) |>
(\(.x){
if (!is.null(by.var)) {
.x |> gtsummary::add_overall()
} else {
.x
}
})() |>
(\(.x){
if (input$add_p == "yes") {
.x |>
gtsummary::add_p() |>
gtsummary::bold_p()
} else {
.x
}
})(),
table2 = models |>
purrr::map(regression_table) |>
tbl_merge(),
input = input
)
output$table1 <- gt::render_gt(
v$list$table1 |>
gtsummary::as_gt()
)
output$table2 <- gt::render_gt(
v$list$table2 |>
gtsummary::as_gt()
)
output$check <- shiny::renderPlot({
p <- plot(check) +
patchwork::plot_annotation(title = "Multivariable regression model checks")
p
# Generate checks in one column
# layout <- sapply(seq_len(length(p)), \(.x){
# patchwork::area(.x, 1)
# })
#
# p + patchwork::plot_layout(design = Reduce(c, layout))
# patchwork::wrap_plots(ncol=1) +
# patchwork::plot_annotation(title = 'Multivariable regression model checks')
})
}
)
output$uploaded <- shiny::reactive({
if (is.null(v$ds)) {
"no"
} else {
"yes"
}
})
shiny::outputOptions(output, "uploaded", suspendWhenHidden = FALSE)
output$has_input <- shiny::reactive({
if (v$input) {
"yes"
} else {
"no"
}
})
shiny::outputOptions(output, "has_input", suspendWhenHidden = FALSE)
# Could be rendered with other tables or should show progress
# Investigate quarto render problems
# On temp file handling: https://github.com/quarto-dev/quarto-cli/issues/3992
output$report <- downloadHandler(
filename = shiny::reactive({
paste0("report.", input$output_type)
}),
content = function(file, type = input$output_type) {
## Notification is not progressing
## Presumably due to missing
shiny::withProgress(message = "Generating report. Hold on for a moment..", {
v$list |>
write_quarto(
output_format = type,
input = file.path(getwd(), "www/report.qmd")
)
})
file.rename(paste0("www/report.", type), file)
}
)
session$onSessionEnded(function() {
cat("Session Ended\n")
files <- list.files("www/")
lapply(files[!files %in% files.to.keep], \(.x){
unlink(paste0("www/", .x), recursive = FALSE)
print(paste(.x, "deleted"))
})
})
}