FreesearchR/R/regression_model.R

712 lines
19 KiB
R
Raw Normal View History

#' Create a regression model programatically
2024-11-08 15:13:33 +01:00
#'
#' @param data data set
#' @param fun Name of function as character vector or function to use for model creation.
#' @param vars character vector of variables to include
#' @param outcome.str Name of outcome variable. Character vector.
#' @param auto.mode Make assumptions on function dependent on outcome data format. Overwrites other arguments.
2024-11-08 15:13:33 +01:00
#' @param formula.str Formula as string. Passed through 'glue::glue'. If given, 'outcome.str' and 'vars' are ignored. Optional.
#' @param args.list List of arguments passed to 'fun' with 'do.call'.
#' @param ... ignored for now
2024-11-08 15:13:33 +01:00
#'
#' @importFrom stats as.formula
#'
#' @return object of standard class for fun
#' @export
2025-02-19 13:17:16 +01:00
#' @rdname regression_model
2024-11-08 15:13:33 +01:00
#'
#' @examples
#' gtsummary::trial |>
#' regression_model(outcome.str = "age")
2024-11-08 15:13:33 +01:00
#' gtsummary::trial |>
#' regression_model(
#' outcome.str = "age",
#' auto.mode = FALSE,
2024-11-08 15:13:33 +01:00
#' fun = "stats::lm",
#' formula.str = "{outcome.str}~.",
#' args.list = NULL
#' )
#' gtsummary::trial |>
#' default_parsing() |>
#' regression_model(
#' outcome.str = "trt",
#' auto.mode = FALSE,
#' fun = "stats::glm",
#' args.list = list(family = binomial(link = "logit"))
#' )
#' m <- mtcars |>
2025-01-17 15:59:24 +01:00
#' default_parsing() |>
#' regression_model(
#' outcome.str = "mpg",
#' auto.mode = FALSE,
#' fun = "stats::lm",
#' formula.str = "{outcome.str}~{paste(vars,collapse='+')}",
#' args.list = NULL,
#' vars = c("mpg", "cyl")
#' )
2025-03-20 11:46:02 +01:00
#' broom::tidy(m)
2024-11-08 15:13:33 +01:00
regression_model <- function(data,
outcome.str = NULL,
2025-01-17 15:59:24 +01:00
auto.mode = FALSE,
2024-11-08 15:13:33 +01:00
formula.str = NULL,
args.list = NULL,
fun = NULL,
vars = NULL,
...) {
if (!is.null(formula.str)) {
if (formula.str == "") {
formula.str <- NULL
}
}
## This will handle if outcome is not in data for nicer shiny behavior
if (isTRUE(!outcome.str %in% names(data))) {
outcome.str <- names(data)[1]
print("Outcome variable is not in data, first column is used")
2025-01-17 15:59:24 +01:00
}
if (!is.null(formula.str)) {
2025-01-17 15:59:24 +01:00
formula.glue <- glue::glue(formula.str)
outcome.str <- NULL
2024-11-08 15:13:33 +01:00
} else {
assertthat::assert_that(outcome.str %in% names(data),
msg = "Outcome variable is not present in the provided dataset"
)
2025-01-17 15:59:24 +01:00
formula.glue <- glue::glue("{outcome.str}~{paste(vars,collapse='+')}")
2024-11-08 15:13:33 +01:00
}
if (is.null(vars)) {
vars <- names(data)[!names(data) %in% outcome.str]
} else if (!is.null(outcome.str)) {
if (outcome.str %in% vars) {
vars <- vars[!vars %in% outcome.str]
}
data <- data |> dplyr::select(dplyr::all_of(c(vars, outcome.str)))
}
2024-11-08 15:13:33 +01:00
# Formatting character variables as factor
# Improvement should add a missing vector to format as NA
data <- data |>
purrr::map(\(.x){
if (is.character(.x)) {
suppressWarnings(REDCapCAST::as_factor(.x))
} else {
.x
}
}) |>
2025-01-15 16:21:38 +01:00
dplyr::bind_cols(.name_repair = "unique_quiet")
if (is.null(fun)) auto.mode <- TRUE
2024-11-08 15:13:33 +01:00
2025-04-09 12:31:08 +02:00
if (isTRUE(auto.mode)) {
2024-11-15 21:57:38 +01:00
if (is.numeric(data[[outcome.str]])) {
2024-11-08 15:13:33 +01:00
fun <- "stats::lm"
2024-11-15 21:57:38 +01:00
} else if (is.factor(data[[outcome.str]])) {
if (length(levels(data[[outcome.str]])) == 2) {
2024-11-08 15:13:33 +01:00
fun <- "stats::glm"
args.list <- list(family = stats::binomial(link = "logit"))
2024-11-15 21:57:38 +01:00
} else if (length(levels(data[[outcome.str]])) > 2) {
2024-11-08 15:13:33 +01:00
fun <- "MASS::polr"
2024-11-15 21:57:38 +01:00
args.list <- list(
2024-11-08 15:13:33 +01:00
Hess = TRUE,
method = "logistic"
)
} else {
stop("The provided output variable only has one level")
}
} else {
stop("Output variable should be either numeric or factor for auto.mode")
}
}
assertthat::assert_that("character" %in% class(fun),
msg = "Please provide the function as a character vector."
)
out <- do.call(
getfun(fun),
c(
list(
data = data,
formula = as.formula(formula.glue)
),
2024-11-08 15:13:33 +01:00
args.list
)
)
# out <- REDCapCAST::set_attr(out,label = fun,attr = "fun.call")
2024-11-08 15:13:33 +01:00
# Recreating the call
# out$call <- match.call(definition=eval(parse(text=fun)), call(fun, data = 'data',formula = as.formula(formula.str),args.list))
return(out)
}
#' Create a regression model programatically
#'
#' @param data data set
#' @param fun Name of function as character vector or function to use for model creation.
#' @param vars character vector of variables to include
#' @param outcome.str Name of outcome variable. Character vector.
#' @param args.list List of arguments passed to 'fun' with 'do.call'.
#' @param ... ignored for now
#'
#' @importFrom stats as.formula
2025-02-19 13:17:16 +01:00
#' @rdname regression_model
#'
#' @return object of standard class for fun
#' @export
#'
#' @examples
#' \dontrun{
#' gtsummary::trial |>
#' regression_model_uv(outcome.str = "age")
#' gtsummary::trial |>
#' regression_model_uv(
#' outcome.str = "age",
#' fun = "stats::lm",
#' args.list = NULL
#' )
#' m <- gtsummary::trial |> regression_model_uv(
#' outcome.str = "trt",
#' fun = "stats::glm",
#' args.list = list(family = stats::binomial(link = "logit"))
#' )
2025-03-20 11:46:02 +01:00
#' lapply(m, broom::tidy) |> dplyr::bind_rows()
#' }
regression_model_uv <- function(data,
outcome.str,
args.list = NULL,
fun = NULL,
vars = NULL,
...) {
## This will handle if outcome is not in data for nicer shiny behavior
2025-03-20 11:46:02 +01:00
if (!outcome.str %in% names(data)) {
outcome.str <- names(data)[1]
print("outcome is not in data, first column is used")
}
if (!is.null(vars)) {
data <- data |>
dplyr::select(dplyr::all_of(
unique(c(outcome.str, vars))
))
}
if (is.null(args.list)) {
args.list <- list()
}
if (is.null(fun)) {
if (is.numeric(data[[outcome.str]])) {
fun <- "stats::lm"
} else if (is.factor(data[[outcome.str]])) {
if (length(levels(data[[outcome.str]])) == 2) {
fun <- "stats::glm"
args.list <- list(family = stats::binomial(link = "logit"))
} else if (length(levels(data[[outcome.str]])) > 2) {
fun <- "MASS::polr"
args.list <- list(
Hess = TRUE,
method = "logistic"
)
} else {
stop("The provided output variable only has one level")
}
} else {
stop("Output variable should be either numeric or factor for auto.mode")
}
}
assertthat::assert_that("character" %in% class(fun),
msg = "Please provide the function as a character vector."
)
out <- names(data)[!names(data) %in% outcome.str] |>
purrr::map(\(.var){
do.call(
regression_model,
c(
list(
data = data[match(c(outcome.str, .var), names(data))],
outcome.str = outcome.str
),
args.list
)
)
})
2024-11-08 15:13:33 +01:00
return(out)
}
2025-01-17 15:59:24 +01:00
### HELPERS
2025-04-14 10:10:33 +02:00
#' Data type assessment.
2025-01-17 15:59:24 +01:00
#'
2025-04-14 10:10:33 +02:00
#' @description
#' These are more overall than the native typeof. This is used to assess a more
#' meaningful "clinical" data type.
#'
#' @param data vector or data.frame. if data frame, each column is evaluated.
2025-01-17 15:59:24 +01:00
#'
#' @returns outcome type
#' @export
#'
#' @examples
#' mtcars |>
#' default_parsing() |>
2025-03-20 11:46:02 +01:00
#' lapply(data_type)
2025-04-14 10:10:33 +02:00
#' mtcars |>
#' default_parsing() |>
#' data_type()
2025-03-20 11:46:02 +01:00
#' c(1, 2) |> data_type()
#' 1 |> data_type()
#' c(rep(NA, 10)) |> data_type()
#' sample(1:100, 50) |> data_type()
#' factor(letters[1:20]) |> data_type()
2025-04-14 10:10:33 +02:00
#' as.Date(1:20) |> data_type()
2025-03-20 11:46:02 +01:00
data_type <- function(data) {
2025-04-14 10:10:33 +02:00
if (is.data.frame(data)) {
sapply(data, data_type)
} else {
cl_d <- class(data)
if (all(is.na(data))) {
out <- "empty"
} else if (length(unique(data)) < 2) {
out <- "monotone"
} else if (any(c("factor", "logical") %in% cl_d) | length(unique(data)) == 2) {
if (identical("logical", cl_d) | length(unique(data)) == 2) {
out <- "dichotomous"
2025-03-20 11:46:02 +01:00
} else {
2025-04-14 10:10:33 +02:00
if (is.ordered(data)) {
out <- "ordinal"
} else {
out <- "categorical"
}
2025-03-20 11:46:02 +01:00
}
2025-04-14 10:10:33 +02:00
} else if (identical(cl_d, "character")) {
out <- "text"
} else if (any(c("hms", "Date", "POSIXct", "POSIXt") %in% cl_d)) {
out <- "datetime"
} else if (!length(unique(data)) == 2) {
## Previously had all thinkable classes
## Now just assumes the class has not been defined above
## any(c("numeric", "integer", "hms", "Date", "timediff") %in% cl_d) &
out <- "continuous"
} else {
out <- "unknown"
2025-01-17 15:59:24 +01:00
}
2025-04-14 10:10:33 +02:00
out
2025-01-17 15:59:24 +01:00
}
2025-04-14 10:10:33 +02:00
}
2025-01-17 15:59:24 +01:00
2025-04-14 10:10:33 +02:00
#' Recognised data types from data_type
#'
#' @returns vector
#' @export
#'
#' @examples
#' data_types()
data_types <- function() {
c("dichotomous", "ordinal", "categorical", "datatime", "continuous", "text", "empty", "monotone", "unknown")
2025-01-17 15:59:24 +01:00
}
#' Implemented functions
#'
#' @description
#' Library of supported functions. The list name and "descr" element should be
#' unique for each element on list.
#'
#'
#' @returns list
#' @export
#'
#' @examples
#' supported_functions()
supported_functions <- function() {
list(
lm = list(
descr = "Linear regression model",
design = "cross-sectional",
out.type = "continuous",
fun = "stats::lm",
args.list = NULL,
formula.str = "{outcome.str}~{paste(vars,collapse='+')}",
table.fun = "gtsummary::tbl_regression",
table.args.list = list(exponentiate = FALSE)
2025-01-17 15:59:24 +01:00
),
glm = list(
descr = "Logistic regression model",
design = "cross-sectional",
out.type = "dichotomous",
fun = "stats::glm",
2025-04-09 12:31:08 +02:00
args.list = list(family = "binomial"),
formula.str = "{outcome.str}~{paste(vars,collapse='+')}",
table.fun = "gtsummary::tbl_regression",
table.args.list = list()
2025-01-17 15:59:24 +01:00
),
polr = list(
descr = "Ordinal logistic regression model",
design = "cross-sectional",
2025-04-09 12:31:08 +02:00
out.type = c("ordinal", "categorical"),
2025-01-17 15:59:24 +01:00
fun = "MASS::polr",
args.list = list(
Hess = TRUE,
method = "logistic"
),
formula.str = "{outcome.str}~{paste(vars,collapse='+')}",
table.fun = "gtsummary::tbl_regression",
table.args.list = list()
2025-01-17 15:59:24 +01:00
)
)
}
#' Get possible regression models
#'
#' @param data data
#'
2025-02-19 13:17:16 +01:00
#' @returns character vector
2025-01-17 15:59:24 +01:00
#' @export
#'
#' @examples
#' mtcars |>
#' default_parsing() |>
#' dplyr::pull("cyl") |>
#' possible_functions(design = "cross-sectional")
#'
#' mtcars |>
#' default_parsing() |>
#' dplyr::select("cyl") |>
#' possible_functions(design = "cross-sectional")
possible_functions <- function(data, design = c("cross-sectional")) {
#
2025-03-20 13:13:14 +01:00
# data <- if (is.reactive(data)) data() else data
2025-01-17 15:59:24 +01:00
if (is.data.frame(data)) {
data <- data[[1]]
}
design <- match.arg(design)
2025-03-20 11:46:02 +01:00
type <- data_type(data)
2025-01-17 15:59:24 +01:00
design_ls <- supported_functions() |>
lapply(\(.x){
if (design %in% .x$design) {
.x
}
})
if (type == "unknown") {
out <- type
} else {
out <- design_ls |>
lapply(\(.x){
if (type %in% .x$out.type) {
.x$descr
}
}) |>
unlist()
}
unname(out)
}
#' Get the function options based on the selected function description
#'
#' @param data vector
#'
#' @returns list
#' @export
#'
#' @examples
#' mtcars |>
#' default_parsing() |>
#' dplyr::pull(mpg) |>
#' possible_functions(design = "cross-sectional") |>
#' (\(.x){
#' .x[[1]]
#' })() |>
#' get_fun_options()
get_fun_options <- function(data) {
descrs <- supported_functions() |>
lapply(\(.x){
.x$descr
}) |>
unlist()
supported_functions() |>
(\(.x){
.x[match(data, descrs)]
})()
}
#' Wrapper to create regression model based on supported models
#'
#' @description
#' Output is a concatenated list of model information and model
#'
#'
#' @param data data
#' @param outcome.str name of outcome variable
#' @param fun.descr Description of chosen function matching description in
#' "supported_functions()"
#' @param fun name of custom function. Default is NULL.
#' @param formula.str custom formula glue string. Default is NULL.
#' @param args.list custom character string to be converted using
#' argsstring2list() or list of arguments. Default is NULL.
#' @param ... ignored
#'
2025-02-19 13:17:16 +01:00
#' @returns list
2025-01-17 15:59:24 +01:00
#' @export
2025-02-19 13:17:16 +01:00
#' @rdname regression_model
2025-01-17 15:59:24 +01:00
#'
#' @examples
#' \dontrun{
2025-01-17 15:59:24 +01:00
#' gtsummary::trial |>
#' regression_model(
#' outcome.str = "age",
#' fun = "stats::lm",
#' formula.str = "{outcome.str}~.",
#' args.list = NULL
#' )
#' ls <- regression_model_list(data = default_parsing(mtcars), outcome.str = "cyl", fun.descr = "Ordinal logistic regression model")
#' summary(ls$model)
2025-04-09 12:31:08 +02:00
#' ls <- regression_model_list(data = default_parsing(mtcars), outcome.str = "mpg", fun.descr = "Linear regression model")
#'
#' ls <- regression_model_list(data = default_parsing(gtsummary::trial), outcome.str = "trt", fun.descr = "Logistic regression model")
#' tbl <- gtsummary::tbl_regression(ls$model, exponentiate = TRUE)
#' m <- gtsummary::trial |>
#' default_parsing() |>
#' regression_model(
#' outcome.str = "trt",
#' fun = "stats::glm",
#' formula.str = "{outcome.str}~.",
2025-04-09 12:31:08 +02:00
#' args.list = list(family = "binomial")
#' )
#' tbl2 <- gtsummary::tbl_regression(m, exponentiate = TRUE)
#' broom::tidy(ls$model)
#' broom::tidy(m)
#' }
2025-01-17 15:59:24 +01:00
regression_model_list <- function(data,
outcome.str,
fun.descr,
fun = NULL,
formula.str = NULL,
args.list = NULL,
vars = NULL,
...) {
options <- get_fun_options(fun.descr) |>
(\(.x){
.x[[1]]
})()
## Custom, specific fun, args and formula options
if (is.null(formula.str)) {
formula.str.c <- options$formula.str
} else {
formula.str.c <- formula.str
}
if (is.null(fun)) {
fun.c <- options$fun
} else {
fun.c <- fun
}
if (is.null(args.list)) {
args.list.c <- options$args.list
} else {
args.list.c <- args.list
}
if (is.character(args.list.c)) args.list.c <- argsstring2list(args.list.c)
## Handling vars to print code
if (is.null(vars)) {
vars <- names(data)[!names(data) %in% outcome.str]
} else {
if (outcome.str %in% vars) {
vars <- vars[!vars %in% outcome.str]
}
}
2025-04-09 12:31:08 +02:00
parameters <- list(
data = data,
2025-04-09 12:31:08 +02:00
fun = fun.c,
formula.str = glue::glue(formula.str.c),
2025-04-09 12:31:08 +02:00
args.list = args.list.c
)
2025-01-17 15:59:24 +01:00
model <- do.call(
regression_model,
parameters
2025-01-17 15:59:24 +01:00
)
parameters_code <- Filter(
length,
modifyList(parameters, list(
2025-04-14 10:10:33 +02:00
data = as.symbol("df"),
formula.str = as.character(glue::glue(formula.str.c)),
outcome.str = NULL
# args.list = NULL,
2025-04-14 10:10:33 +02:00
))
)
2025-04-09 12:31:08 +02:00
## The easiest solution was to simple paste as a string
## The rlang::call2 or rlang::expr functions would probably work as well
# code <- glue::glue("FreesearchR::regression_model({parameters_print}, args.list=list({list2str(args.list.c)}))", .null = "NULL")
2025-04-14 10:10:33 +02:00
code <- rlang::call2("regression_model", !!!parameters_code, .ns = "FreesearchR")
2025-01-17 15:59:24 +01:00
list(
options = options,
model = model,
code = expression_string(code)
2025-01-17 15:59:24 +01:00
)
}
list2str <- function(data) {
out <- purrr::imap(data, \(.x, .i){
if (is.logical(.x)) {
arg <- .x
} else {
arg <- glue::glue("'{.x}'")
}
glue::glue("{.i} = {arg}")
}) |>
unlist() |>
paste(collapse = (", "))
if (out == "") {
2025-01-17 15:59:24 +01:00
return(NULL)
} else {
out
}
}
#' @returns list
2025-01-17 15:59:24 +01:00
#' @export
2025-02-19 13:17:16 +01:00
#' @rdname regression_model
2025-01-17 15:59:24 +01:00
#'
#' @examples
#' \dontrun{
2025-03-20 11:46:02 +01:00
#' gtsummary::trial |>
#' regression_model_uv(
#' outcome.str = "trt",
#' fun = "stats::glm",
#' args.list = list(family = stats::binomial(link = "logit"))
#' ) |>
#' lapply(broom::tidy) |>
#' dplyr::bind_rows()
2025-01-17 15:59:24 +01:00
#' ms <- regression_model_uv_list(data = default_parsing(mtcars), outcome.str = "mpg", fun.descr = "Linear regression model")
2025-04-09 12:31:08 +02:00
#' ms$code
#' ls <- regression_model_uv_list(data = default_parsing(mtcars), outcome.str = "am", fun.descr = "Logistic regression model")
#' ls$code
2025-03-20 11:46:02 +01:00
#' lapply(ms$model, broom::tidy) |> dplyr::bind_rows()
#' }
2025-01-17 15:59:24 +01:00
regression_model_uv_list <- function(data,
outcome.str,
fun.descr,
fun = NULL,
formula.str = NULL,
args.list = NULL,
vars = NULL,
...) {
options <- get_fun_options(fun.descr) |>
(\(.x){
.x[[1]]
})()
## Custom, specific fun, args and formula options
if (is.null(formula.str)) {
formula.str.c <- options$formula.str
} else {
formula.str.c <- formula.str
}
if (is.null(fun)) {
fun.c <- options$fun
} else {
fun.c <- fun
}
if (is.null(args.list)) {
args.list.c <- options$args.list
} else {
args.list.c <- args.list
}
if (is.character(args.list.c)) args.list.c <- argsstring2list(args.list.c)
## Handling vars to print code
if (is.null(vars)) {
vars <- names(data)[!names(data) %in% outcome.str]
} else {
if (outcome.str %in% vars) {
vars <- vars[!vars %in% outcome.str]
}
}
# assertthat::assert_that("character" %in% class(fun),
# msg = "Please provide the function as a character vector."
# )
# model <- do.call(
# regression_model,
# c(
# list(data = data),
# list(outcome.str = outcome.str),
# list(fun = fun.c),
# list(formula.str = formula.str.c),
# args.list.c
# )
# )
model <- vars |>
lapply(\(.var){
parameters <-
list(
fun = fun.c,
data = data[c(outcome.str, .var)],
formula.str = as.character(glue::glue(gsub("vars", ".var", formula.str.c))),
args.list = args.list.c
)
2025-04-09 12:31:08 +02:00
out <- do.call(
2025-01-17 15:59:24 +01:00
regression_model,
parameters
2025-01-17 15:59:24 +01:00
)
2025-04-09 12:31:08 +02:00
## This is the very long version
## Handles deeply nested glue string
# code <- glue::glue("FreesearchR::regression_model(data=df,{list2str(modifyList(parameters,list(data=NULL,args.list=list2str(args.list.c))))})")
2025-04-14 10:10:33 +02:00
code <- rlang::call2("regression_model", !!!modifyList(parameters, list(data = as.symbol("df"), args.list = args.list.c)), .ns = "FreesearchR")
2025-04-09 12:31:08 +02:00
REDCapCAST::set_attr(out, code, "code")
})
2025-01-17 15:59:24 +01:00
2025-04-09 12:31:08 +02:00
code <- model |>
lapply(\(.x)REDCapCAST::get_attr(.x, "code")) |>
lapply(expression_string) |>
pipe_string(collapse = ",\n") |>
2025-04-09 12:31:08 +02:00
(\(.x){
paste0("list(\n", .x, ")")
2025-04-09 12:31:08 +02:00
})()
2025-01-17 15:59:24 +01:00
list(
options = options,
model = model,
code = code
)
}
# regression_model(mtcars, fun = "stats::lm", formula.str = "mpg~cyl")