FreesearchR/R/regression_plot.R

106 lines
3 KiB
R
Raw Normal View History

2025-01-30 14:32:11 +01:00
#' Regression coef plot from gtsummary. Slightly modified to pass on arguments
#'
#' @param x (`tbl_regression`, `tbl_uvregression`)\cr
#' A 'tbl_regression' or 'tbl_uvregression' object
## #' @param remove_header_rows (scalar `logical`)\cr
## #' logical indicating whether to remove header rows
## #' for categorical variables. Default is `TRUE`
## #' @param remove_reference_rows (scalar `logical`)\cr
## #' logical indicating whether to remove reference rows
## #' for categorical variables. Default is `FALSE`.
#' @param ... arguments passed to `ggstats::ggcoef_plot(...)`
#'
#' @returns ggplot object
#' @export
#'
#' @examples
#' \dontrun{
2025-03-19 09:14:36 +01:00
#' mod <- lm(mpg ~ ., default_parsing(mtcars))
2025-01-30 14:32:11 +01:00
#' p <- mod |>
#' gtsummary::tbl_regression() |>
#' plot(colour = "variable")
#' }
#'
plot.tbl_regression <- function(x,
2025-03-19 09:14:36 +01:00
plot_ref = TRUE,
remove_header_rows = TRUE,
remove_reference_rows = FALSE,
2025-01-30 14:32:11 +01:00
...) {
# check_dots_empty()
gtsummary:::check_pkg_installed("ggstats")
gtsummary:::check_not_missing(x)
# gtsummary:::check_scalar_logical(remove_header_rows)
# gtsummary:::check_scalar_logical(remove_reference_rows)
df_coefs <- x$table_body
2025-03-19 09:14:36 +01:00
browser()
if (isTRUE(remove_header_rows)) {
df_coefs <- df_coefs |> dplyr::filter(!header_row %in% TRUE)
}
if (isTRUE(remove_reference_rows)) {
df_coefs <- df_coefs |> dplyr::filter(!reference_row %in% TRUE)
}
2025-01-30 14:32:11 +01:00
2025-03-19 09:14:36 +01:00
# Removes redundant label
2025-01-30 14:32:11 +01:00
df_coefs$label[df_coefs$row_type == "label"] <- ""
2025-03-19 09:14:36 +01:00
# Add estimate value to reference level
if (plot_ref == TRUE){
df_coefs[df_coefs$var_type == "categorical" & is.na(df_coefs$reference_row),"estimate"] <- if (x$inputs$exponentiate) 1 else 0}
df_coefs |>
2025-01-30 14:32:11 +01:00
ggstats::ggcoef_plot(exponentiate = x$inputs$exponentiate, ...)
}
# default_parsing(mtcars) |> lapply(class)
#
# purrr::imap(mtcars,\(.x,.i){
# if (.i %in% c("vs","am","gear","carb")){
# as.factor(.x)
# } else .x
# }) |> dplyr::bind_cols()
#
#
#' Wrapper to pivot gtsummary table data to long for plotting
#'
#' @param list a custom regression models list
#' @param model.names names of models to include
#'
#' @returns list
#' @export
#'
merge_long <- function(list, model.names) {
l_subset <- list$tables[model.names]
l_merged <- l_subset |> tbl_merge()
df_body <- l_merged$table_body
sel_list <- lapply(seq_along(l_subset), \(.i){
endsWith(names(df_body), paste0("_", .i))
}) |>
setNames(names(l_subset))
common <- !Reduce(`|`, sel_list)
df_body_long <- sel_list |>
purrr::imap(\(.l, .i){
d <- dplyr::bind_cols(
df_body[common],
df_body[.l],
model = .i
)
setNames(d, gsub("_[0-9]{,}$", "", names(d)))
}) |>
dplyr::bind_rows() |> dplyr::mutate(model=as_factor(model))
l_merged$table_body <- df_body_long
l_merged$inputs$exponentiate <- !identical(class(list$models$Multivariable$model), "lm")
l_merged
}