FreesearchR/vignettes/visuals.Rmd

56 lines
1.5 KiB
Text
Raw Permalink Normal View History

2025-04-23 14:26:18 +02:00
---
title: "On visuals"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{visuals}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
options(rmarkdown.html_vignette.check_title = FALSE)
```
```{r setup}
library(FreesearchR)
```
## Basic visualisations
The goal of ***FreesearchR*** is to keep things simple. Visuals can get very complicated. We provide a selection of plots, that helps visualise typical clinical and will be enough for most use cases, and for publishing to most journals.
If you want to go further, have a look at these sites with suggestions and sample code for data plotting:
- [*R* Charts](https://r-charts.com/): Extensive gallery with great plots
- [*R* Graph gallery](https://r-graph-gallery.com/): Another gallery with great graphs
- [graphics principles](https://graphicsprinciples.github.io/): Easy to follow recommendations for clear visuals.
### Available plots
Below are the available plot types listed.
```{r echo = FALSE, eval = TRUE}
c("continuous", "dichotomous", "categorical") |>
lapply(\(.x){
dplyr::bind_cols(
dplyr::tibble("Data type"=.x),
supported_plots() |>
lapply(\(.y){
if (.x %in% .y$primary.type){
.y[c("descr","note")]|> dplyr::bind_cols()
}
})|>
dplyr::bind_rows() |>
setNames(c("Plot type","Description")))
}) |>
dplyr::bind_rows() |>
knitr::kable()
```